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Abstract

To calculate with averages

Niklas Molin

This thesis specifies the foundation for a computer system that operates on averages
of measured values provided by automatic measurements systems. This consists of
specifying a data object for the average of measured values and fusion methods for
that object. The data object should, apart from the value, contain a time and quality
description for the average. The fusion methods considered are elementary arithmetic
operations to combine different objects and aggregates to yield summarized
information on homogenous objects.     

The quality of the data objects are described by three attributes; uncertainty,
confidence and completeness. The study provides propagation methods for all quality
attributes but focuses on the uncertainty of the value. Three different methods for
uncertainty propagation are tested. The first method is based on the framework of
the corresponding ISO-standard. The others are standard Monte Carlo and
quasi-Monte Carlo simulations. 

The findings can be used directly as material for an implementation of a system that
operates on averages or as material for further discussion. Some of the issues
concerning such a system remain unresolved, while others might be optimized. 
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Populärvetenskaplig beskrivning 

Dagens industri använder ofta avancerade automatiska mätsystem och detta gäller i 
synnerhet för processindustrier. Dessa mätsystem nyttjas ofta till styrning och kontroll av 
processer men kan även utgöra en datakälla för extern användning av mätresultaten. 
Detta arbete specificerar grunderna för ett datasystem som genomför beräkningar på 
medelvärden av mätresultat. Med grunderna avses ett medelvärdesobjekt samt 
beräkningar med denna typ av objekt. Medelvärdesobjektet innehåller förutom själva 
medelvärdet, en tids- och en kvalitetsbeskrivning av värdet.  
 
Ett av användningsområdena för ett sådant datasystem är att beräkna processegenskaper 
som är svåra att mäta. Ett aktuellt exempel som presenteras i denna rapport är 
beräkningen av det totala koldioxidutsläppet från en processindustri. Koldioxidutsläppet 
är intressant eftersom processindustrier är ålagda att redovisa storleken på sina utsläpp 
samt köpa utsläppsrätter som motsvarar utsläppet. För att beräkna koldioxidutsläppet i det 
presenterade exemplet används över hundra uppmätta mätvärden och självklart eftersöks 
ett så korrekt värde som möjligt. Ett annat användningsområde är kvalitetsäkring av data. 
Modeller av samband mellan kvantiteter kan användas för att kontrollera de uppmätta 
värdenas rimlighet och eventuellt även korrigera felaktigheter.     
 
Medelvärdesbildning används eftersom många mätningar genomförs väldigt ofta och 
därigenom genererar stora mängder data. Tyvärr innebär medelvärdesbildningen en 
informationsförlust som försvårar specifikationsarbetet. Exempelvis resulterar en 
multiplikation av två uppmätta storheters medelvärden inte i samma värde som 
medelvärdet av en produkt av de individuella mätningarna på samma storheter.  
      
En stor del av arbetet ägnas åt att definera en lämplig kvalitetsbeskrivning av data. 
Kvalitetsbeskrivningen beskriver möjliga skillnader mellan det registrerade medelvärdet 
och det sanna medelvärdet av den storhet som medelvärdesobjektet representerar.  Tre 
aspekter av datakvaliteten behandlas: osäkerheten i medelvärdena orsakade av 
precisionsbrist i mätningarna, fel som införts av medelvärdesbildningen och 
beräkningarna, samt hur stor del av de underliggande mätningarna som anses lyckade. 
När olika beräkningar genomförs på medelvärdena måste lämpliga metoder användas för 
att generera en adekvat kvalitetsbeskrivning av resultatet. Dessa metoder behandlas mest 
utförligt för den osäkerhet i värdet som orsakats av precisionsbrist i mätningarna. Tre 
olika metoder för denna osäkerhet presenteras och deras lämplighet för denna specifika 
tillämpning utvärderades med en mindre testapplikation. Den slutgiltiga specifikationen 
innefattar: 

• Ett dataobjekt som innehåller medelvärdet för en variabel tidsperiod, en 
beskrivning av tidsperioden och en kvalitetsbeskrivning.  

• Definitioner av hur dessa dataobjekt kan kombineras enligt de fyra räknesätten, 
samt regler för att definiera ytterligare matematiska operationer.  

• Beskrivningar av ett antal väl valda aggregeringar för dataobjekten.  

• En beskrivning av hur medelvärdsobjekt för samma storhet som härrör från olika 
källor kan kombineras för att öka noggrannheten.   
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1 Introduction 
Industrial processes often routinely collect large amounts of data. This is done by 
computers collecting measurements on numerous process variables such as flows, 
pressures and temperatures. In addition to the process variables, several quality and 
productivity variables are usually measured. (MacGregor, 1997)  

These measurement systems most often store the data and provide an interface for 
communicating data concerning the measured quantities of the process. This data 
provided by modern measurements systems isn’t restricted to raw data values1; such 
systems often provide fused values such as average over time, standard deviation and 
the value accumulated over a time period.   

Some of the measured variables are thereafter used in activities like reporting, for 
example, production or greenhouse gas emission reports.  But the entities used in 
reporting don’t always correspond to values obtained by measurements. Not all 
characteristics of a process can be measured. Some are too complicated, others too 
expensive. Those entities can often be calculated from a combination of measured 
values.  

The basic idea behind this thesis is that a great increase in information value can be 
gained by constructing a computer system that combines knowledge about the process 
and the data from the measurement system. This would allow for non-measured process 
variables to be determined in terms of their relations to measured variables and thereby 
continuously assigned values. Multiple ways of evaluating a process variable could be 
defined, thus improving on the accuracy in the values and lowering the amount of 
missing data points for process variables. Known relationships such as mass and energy 
balances can be used to verify and correct values and thereby to increase the reliability 
of the data.  

Such a computer system could provide an organization with the information it needs 
about its production processes. All desired calculation could be performed within the 
system and thereby eliminate the need for further post processing of the values. An 
instant application is that it would eliminate the need for the large spreadsheet 
calculations that’s often used to produce the specific entities used in reports and 
planning activities.  

The creation of such a system would require several different building blocks. For 
example, a database is needed for storage. Another crucial part would be the application 
that performs the defined calculations. This thesis will focus on the mathematics of that 
application, i.e. how to treat the data mathematically. The implementation of the 
application won’t be discussed further. But the concepts of his thesis should be 
applicable regardless whether the application is implemented as stored procedures 
within the database or as standalone software.     

1.1 Aim of this study 
The aim of this work is to specify the foundation for a computer based system for 
historical process data2 that combines the masses of process data with a mathematical 
model of the process and thereby increases the information gained by performing 

                                                
1 A raw data values is simply the data retrieved from a measurement.  
2 The term historical implies simply that the data originates from prior timestamp. 
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operations on the measured values.  This consists of specifying a data object and how to 
perform operations on instances of that object. The data objects should, in addition to 
the values gained from the measurement, contain a quality description of those values. 
This quality description must include measurement uncertainty as one of its dimension. 
Measurement uncertainty is a well defined concept and it is often desired to have the 
uncertainty in measured values stated explicitly. This work’s minimum criterion is that 
the uncertainty evaluation must conform to the directives concerning the reporting of 
CO2-emission in Sweden. This specific criterion was chosen since it’s an activity that 
most Swedish process industries must conduct. The activity was also the underlying 
reason for the decision to stipulate the inclusion of measurement uncertainty in the 
quality description at this early stage.  

The two most prominent features that complicate these specifications are the time 
requirements and the incorporation of measurement uncertainty into the data object:   

• The system should operate on averages valid for specified time intervals rather 
than discrete data points. Some arguments for this are: sampling rates might 
differ whereas handling values specified on a common time interval simplifies 
the system, save storage space and computational time by not performing large 
calculations and communicating data at an unnecessary high rate.  

• The value of a process quantity might be gained from one of several possibilities 
for each time interval. The uncertainty in the value of a process quantity might 
therefore vary between time intervals.  

 
This work won’t cover algorithms of higher conceptual level, i.e. algorithms that use the 
process model to verify or improve on the measurements values. For example, the mass 
and energy balances found in many processes provide interesting opportunities for the 
construction of such algorithms. But the exploration of those opportunities and 
development of such algorithms don’t fit within the timeframe of this thesis.    

The core of the above stated aim can be summarized and rephrased into a couple of 
questions: 

• How can the quality of the data be assured when averaging is used to diminish 
the data quantity? 

• How can the quality of the result be assured when calculations are performed on 
averaged data? 

 
These two questions will hopefully be answered implicitly by the treatment in the 
subsequent chapters.   

1.2 A Note on the methodology 
The contemplated methodology of this study was to conduct a literature review of 
previous work regarding the subject and thereby identify the most popular methods. The 
differences in the characteristics of those methods could be used to evaluate the 
methods and deduce suitable specifications from those results. This structure was 
abandoned at an early stage due to the poor results of the literature review.  Lots of 
studies have been conducted on most of the notions found this thesis, for example: data 
quality, measurements systems and measurement uncertainty. Less information was 
found on the actual problem of this thesis: assuring the quality whilst using averages to 
diminish the quantity of data. 
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The lack of input changed the scope of this work slightly; focus was slightly shifted 
towards finding a framework for calculations with averages of measured values (in 
contrast to finding the optimal framework). A drawback of this approach is the 
difficulty to evaluate the adequacy and performance of the proposed framework, no 
evaluation in relative terms can be completed due to the lack of references. The 
specification was therefore developed using a best known option criteria, drawing 
inspiration and input from related concepts. This methodological shortcoming gives this 
work a descriptive orientation, resulting in a proposed framework that doesn’t claim to 
be optimal but at least usable.    

One aspect of the specification that allows numerical evaluation of the adequacy is 
measurement uncertainty. These trials and the concept of the measurement uncertainty 
were therefore given a prominent role in this thesis. The methodology of these trials is 
described in the chapter 7.  

1.2 Disposition 
The first part of this thesis, the chapter called background, contains short introductions 
to three concepts that are important to the remaining parts: measurement systems, data 
quality and signal sampling. The aim of the chapter isn’t to provide a review of the 
latest research within the corresponding fields but rather to provide the reader with an 
insight on how the concepts affected and were regarded throughout this work. The 
second chapter introduces a data object and specifies operations on these objects. The 
concept of measurement uncertainty is incorporated in the data object but presented in 
the subsequent chapter. The slight focusing on uncertainty has been made since the 
concept constitutes an interesting topic; it’s subject to requirements, standards and 
extensive research. Chapter five contains the last part of the specifications, how multiple 
value sources of the same physical quantity can be combined to provide a more accurate 
value. It constitutes a separate chapter since it utilizes notions from both preceding 
specification chapters and therefore must be presented subsequent to them.  
 
Arguments for the design choices and the final specifications are mixed to provide a 
clearer view of the theoretical foundation for each choice. This mixture of results and 
theoretical foundation might make it more difficult to distinguish between the results of 
previous studies and concepts that are innovated in this work. A rule to distinguish the 
two categories is, as always, that the results of previous studies are referenced to a 
source presenting those results.  
 
The methods proposed in the chapters on uncertainty and combining multiple sources 
were subject to testing. The application used and the test cases are presented in chapter 
six; test case and implementation. The tests, their results and discussions of the results 
are presented in chapter seven. The thesis is wrapped up with the concluding discussion 
in chapter eight.     
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2 Background  
This chapter consists of three independent sections that serve the purpose of providing a 
short introduction to three different concepts. The first section discusses briefly the 
measurement systems that a system based on the specifications of this thesis would 
interact with. The second section is a short introduction to the concept of data quality; 
practical issues of this concept will run through this entire thesis. The third section 
contains a discussion of how the sampling process affects and constraint the treatment 
of measured values. No deeper understandings of these concepts are needed to grasp the 
remaining content of this thesis but the chapter will hopefully provide the uninitiated 
reader with a better understanding of the remaining chapters.     

2.1 Measurement systems 
Industrial processes are often equipped with a measurement system that performs 
measurements at different points in the process. This can be illustrated as in Figure 1, 
where the points X1,…,X10 signify sensors conducting measurements.  

 

 
Figure 1 - Sensors in a process unit 

The measured quantities marked in the picture will in this thesis be referred to as the 
process variables (PVs) X1,..,Xn and the values from measurements conducted with the 
sensors are the observations x1,..,xn of those PVs.  

An example of a class of automatic measurement systems are the SCADA systems 
described in section 2.1.1 below. The PI system by OSIsoft constitutes another, more 
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concrete, example (OSIsoft, 2008). The section 2.1.2 provides some background on a 
standard interface for communication of historical data. It’s actually that interface a 
system built on the specifications of this thesis would have to recognize and not the 
actual measurement system.     

2.1.1 SCADA Systems  
SCADA is an acronym for supervisory control and data acquisition. As the acronym 
suggests, these are computer systems for gathering and analyzing real time data. They 
are used to monitor and control a plant, equipment in industries or other types of 
complex activities such as a municipal water system (Webopedia: SCADA). There is 
some confusion around the definition and the distinction towards distributed control 
systems. A distinction is sometimes introduced by stating that SCADA systems 
coordinate rather than control processes (Wikipedia: SCADA). 

The system usually consists of four types of subsystems (Office of the manager; 
National communications system, 2004): 

• A Master terminal unit (MTU), which gathers data on and sends commands out 
to the process, the central unit that processes and stores the data.  

• Remote terminal units (RTU), the units that actually communicate with the 
process, for example, a programmable logic controller (PLC) that amongst other 
things acquires samples of the process from sensors.   

• HMI, a human-machine interface that communicates information from the 
system to its operators, for example, notifying the operators about alarms, 
visualizing real time data and plotting trends.    

• Communication infrastructure; connecting the parts of a real time systems can be 
nontrivial when they sometimes cover 7000 km of pipelines (Case Study: OPC 
connects large SCADA Gas Transmission System to Customer Systems). 

So the SCADA systems are often quite large and complicated.  But this thesis won’t 
require any details about these systems since the MTU of most SCADA systems 
includes a historical data server (also called historian). The historian logs the data from 
the SCADA system and supplies the data for external use. The interface provided by the 
historian could be used in the construction of a system that uses various measured 
values from the process and therafter performs operations using those values.       

2.1.2 OPC foundation 
The OPC foundation (the name OPC is an abbreviation for Ole for Process Control) is 
an organization that produces standards aiming to provide interoperability in industrial 
automation and enterprise systems that support industry (OPC about). According to 
themselves, their members include nearly all of the world’s major providers of control 
systems, instrumentation, and process control systems (OPC about).Their standard 
Historical Data Access (OPC HDA) specification (currently at version 1.20) specifies an 
interface for communicating historical data. An implementation of this interface would 
allow a system built on the specifications of this thesis to communicate with a wide 
range of data providers and facilitate other applications communication to the system. 
The specification will be used as a guideline throughout this work. It will be a guideline 
in the sense that it provides information about what the system sketched by these 
specifications can expect when retrieving data from historians. It also provides a list of 
and information about standard aggregates that should be implemented.  
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2.2 Data quality 
 
Using sensor based automatic measurements systems restricts the data quality. The 
sensors themselves have restrictions, often physical, that limit the numerical precision in 
the measurements. Failures and malfunctions in sensors are commonly occurring, 
returning erroneous or no values at all. Data processing is likely to amplify the initial 
error, for example, by the sampling process. Operations like aggregation, combination 
and evaluation are performed to reduce the data quantity or to extract information. This 
may summarize the inherent errors but also introduce new ones. Knowledge about the 
quality of the data used is therefore essential since the data often is used in reporting, 
decision making and other activities where the output of activity is likely to inherent 
deficiencies from input data (Klein, 2007). 

The notion of data quality is a multidimensional concept. A literature review in the mid 
90’s showed that a multitude of dimensions were proposed with no consensus of a 
suitable set nor exact definitions for the proposed dimensions (Wang,1995). Examples 
of dimensions that were frequently mentioned are; consistency, completeness, accuracy 
and timeliness. 

But there are good examples of sets that aim to give a generic and complete description 
of the data quality. For example, Wand and Wang (1996) performs in Anchoring data 
quality dimensions in ontological foundations an analysis of data quality based on 
inconformity between the two views of the real world system; the view obtained by 
direct observation and the view inferred from the information system. Their analysis 
generated a set of four data quality dimensions, whether the data can be: complete, 
unambiguous, meaningful and correct. Their usage of inconformity to discuss 
dimensions does, apart from aid in the deduction of a reasonable set of dimension, 
provide useful interpretations of the dimensions. Unfortunately they, as so many others, 
fail to discuss how the dimensions can be operationalized. Theoretical definitions 
cannot be directly implemented in methods that assess the data quality, not without 
operationalization and methods for propagation. The operationalization and propagation 
methods are likely to be problematic and this work will therefore use notions that give 
sufficient information about the data quality and focus on the operationalization and 
propagation of those notions. 

Someone who has treated the more practical issues of the quality of data from a 
continuous stream of samples generated by an automatic measurement system is Anja 
Klein. She identifies in Incorporating quality aspects in sensor data streams the 
problem with unreliable sensors as a data source for business applications and the need 
for reliable knowledge about the quality of the data. Her solution is to stipulate that 
three dimensions are needed for a good description of the quality: accuracy, confidence 
and completeness.  The different dimensions are defined as: 

• Accuracy, the data quality dimension that describe the numerical precision of 
measurement data (the errors that the measurement processes introduce).  

• Confidence, the data quality dimension that signifies the errors that the 
sampling operators introduce.  

• Completeness, the data quality dimension that addresses the problem of missing 
or bad data values due to failures or malfunctions in the measurement process.  

Klein also defines methods for assignation of numerical values of those dimensions to 
specific data and how to propagate those quality measures through different operations. 
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She provides a whole framework for handling data quality in an application that 
receives continuous data, exactly what is needed in these specifications.  

Her work served as source of inspiration when developing the data object and 
operations presented in the subsequent chapters. The theoretical discussion in her work 
may be limping and the theoretical foundation weak but she actually provides a neat 
framework for working with the three dimensions. Details on this framework and 
additional information can be found in the original paper. More on how the treatment of 
data quality in this work was influenced by results found in the literature can be found 
in the sections concerning the data object and operations on that object.     

2.3 Signal Sampling  
 
This work isn’t directly concerned with the signal sampling but working with averages 
of samples or the samples themselves are, of course, related concepts. Two aspects of 
signal sampling that must be considered in this work are:  

• The systems sources of measured data might use different sampling rates.     

• There are firm limits on the density needed for datasets to represent a continuous 
signal accurately; lowering the number of data points or performing operations 
on a data set might therefore result in information loss.  

The aim of a system that operates on averages is, of course, to use averages over longer 
time intervals than the most frequent sampling in the system while retaining the 
accuracy and validity of the values.    

The Nyquist sampling theorem provides limits for how often an analog signal must be 
sampled in order to enable exact signal reconstruction. The theorem states that the 
sampling frequency must be greater than twice the bandwidth of the signal (Glad & 
Ljung, 1981). Hence to get all sought information from a signal with the highest 
frequency of interest at 1 Hz, the signal has to be sampled more than twice a second. 
The sampling process in practical applications does often operate on a significantly 
higher sampling frequency than twice the bandwidth (Wikipedia: Sampling).    

The sampling rates of a measurement system are hopefully set in a correct manner, 
resulting in data sets that represent the measured variables well enough. But the 
specification of a system that performs calculations on the measured data is facilitated if 
all PVs have data points available at corresponding time stamps. This desired 
functionality can always be fulfilled since upwards sampling rate conversion can be 
applied to the PV that are not the most frequently sampled. The upwards sampling rate 
conversion is achieved by interpolation (John Watkinson, 2002).  In the most 
straightforward case, where the sample rate is doubled, points are added halfway 
between the original samples and their value gain by a suitable interpolation method 
(Wikipedia:  Sample rate conversion).  

There are normally restrictions to the rate (or density) of data points when calculating 
and storing numerous variables. A variable described by a data point per second would 
need approximately one MB per day in storage space in an OPC Historian (Kirrmann, 
2005). Hence a historian logging measured values of 1000 variables would need one GB 
of storage space per day and 365 GB per year.  A reasonable representation in Java, 
representing the value by a double and the timestamp by a long, corresponds to a usage 
of 1.3824 MB per variable/day for variables stored once per second. Storing these 
amounts of data wouldn’t constitute a problem. But a slower rate might be preferable if 
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each data point has to be stored, communicated through shared networks and used in 
calculations.  

The other, theoretical, option to obtain a dataset where all variables have points at the 
same points in time would be to downsample (downwards sample rate conversion) the 
more frequent sampled variables. In digital signal processing, downsampling (or 
subsampling) should ideally be carried out with respect to the Nyqvist sampling 
theorem.  

The operational frequency of the system can be lowered by introducing averages. 
Averaging can be regarded as a sort of subsampling but changes the situation slightly. 
Averages formed from a sufficient set of data points, are indeed valid average values for 
those PVs. But what happens when two averages are combined to constitute an average 
of a different PV? Can such operations be considered valid? Table 1 illustrates two such 
operations; addition and multiplication.  The example in the table indicates that the 
linear operation addition produces a correct average value for the output even when the 
two underlying datasets contains variation. The nonlinear operation multiplication 
seems to be more problematic, multiplication of the two averages of X1 and X2 results in 
18.24 which differs from the result gained by multiplying the individual samples.   

Sample nr X1 X2 X1+X2 X1*X 2 
1 2 6 8 12 
2 5 4 9 20 
3 2 4 6 8 
4 1 7 8 7 
5 7 9 16 63 
6 3 2 5 6 
7 6 3 9 18 
8 1 7 8 7 
9 4 4 8 16 
10 7 2 9 14 

Average 3.8 4.8 8.6 17.1 

Table 1 - Combining and averaging of two PVs 

The error for the multiplication of the averages in Table 1 can be explained in terms of 
the Nyquist sampling theorem. If the intervals were chosen too long, i.e. the true values 
of the actual quantities measured vary within the interval and then nonlinear operations 
on the averages will produce erroneous results. Hence, choosing the time interval for the 
averages too long can be considered synonymous with choosing the sampling rate to 
low. If the intervals were chosen adequately, then the measurements were affected by 
some erroneous effects, for example, signals of higher frequency than those of interest 
to the measurement. Then multiplying the averages probably provides a more accurate 
value and the difference against multiplying each pair of samples is due to cancellation 
of the erroneous effects.    
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3 Object and operations specification 
This chapter specifies the data object, analogues of elementary arithmetic operations for 
the data objects and slightly modified implementations of the functions specified as 
standard aggregates in the OPC HDA. 

3.1 Data object 
 
The requirement on the specifications to consider average values rather than discrete 
data points simplifies the specifications in many aspects. It also brings on problems due 
to the loss of information caused by substituting several raw values for their average. 
The problem of choosing suitable time intervals for the averages will be treated by 
introducing the notion of unit time and the concept of active time.  

Unit time  is the length of the common time interval for the averages of PVs. The length 
of the unit time should ideally be set in accordance with the bandwidth of the measured 
PVs, the operations performed on the PVs and the aim of the system. The average value 
of a PV over a unit time interval incorporated in the data object of this section will be 
denoted a unit time average.  

The information lost when averaging is slightly reduced by giving the data objects an 
attribute corresponding to the length of the subinterval where the measured quantity has 
been an active part of the system treated. The length of this subinterval will be noted the 
active time of a unit time average. This active time can, of course, also be used as a 
switch indicating when a PV should be included in calculation and so on, this by setting 
the active time to zero. 

The description of the quality of the data will include two measures of the accuracy and 
one of the completeness. The accuracy of the data will be divided into two categories to 
make a distinction between both the origin and nature of the imperfections. The 
categories are, as in the work of Anja Klein, imperfections in the measurement of a 
single data value that lowers the accuracy and the errors introduces by the sampling 
process. The first category will be called uncertainty and the second confidence. 
Measurement uncertainty is a well defined concept and some activities, such as 
reporting CO2-emission, require that the concept of uncertainty is used to establish the 
quality of the data used to calculate the emission. Using the concept of uncertainty and 
conforming to the standards and regulations concerning the concept is therefore 
beneficial for systems that perform operations on automatically measured process 
variables.  
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Figure 2 - Data object 

A suitable object to represent the unit time averages is presented in Figure 2. There is a 
self-explanatory need for attributes containing the average value and the time period for 
which the average value is valid. The object proposed in Figure 2 uses a slightly more 
detailed time description. Active time has been added to the basic description of a time 
interval consisting of start time and duration. This inclusion aims to reduce the 
erroneous effect of processes not even being active for certain parts of the time period, 
as mentioned above.  

The three attributes completeness, confidence and uncertainty can be regarded as 
different attributes describing the quality of the data.  

The standard deviation is included since some value of the spread might be desired. No 
other attribute offers any information about the variation within the time periods. An 
application would be to verify the measured values, for example, unexpected spread in 
the values or constant values can indicate corrupt measurements. It’s also used in the 
propagation of confidence. All the attributes of Figure 2 are described more elaborately 
in separate sections below.  

3.1.1 Value  
 
The average value of a data object consists of a measured or calculated value that is 
valid for the time period specified in the data object. The time period is the interval 
starting at the time stamp and ending the number of time units specified as duration 
after the time stamp. The average aggregate specified in OPC HDA can be a regarded as 
a specification on how to compute the average values and as an example of a possible 
interface towards a source providing average values to the system. The OPC HDA 
specifies the average aggregate to be the arithmetic average of all good raw values in 
the interval. The section on completeness contains a discussion on the significance of a 
value being of good quality.  
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3.1.2 Uncertainty   
Uncertainty is an attribute that expresses the error in the value that was caused by 
imprecision in the measurements. This concept will be clarified in the chapter with the 
same name.  

3.1.3 Confidence  

Klein defines confidence as a parameter ( )Xε  such as the interval 

( ) ( )[ ]XxXx εε +− , constitutes a 95%-confidence interval for the PV X for which x is a 
random sample from the time interval specified by time stamp and duration (Klein, 
2007). A normal interpretation is that there is a 95 percent chance that the true value of 
the variable X lays within the interval (Klein, 2007). The interpretation and usage here 
will be slightly different; the confidence will be used to indicate undesired variance and 
erroneous effects due to the treatment unit time averages derived from varying data 
points. The intervals produced by applying the proposed formulas aren’t guaranteed to 
hold a 95 percent confidence level. Both uncertainty and confidence should be regarded 
as attributes that penalize the accuracy in the value. But confidence is a less exact 
concept and shouldn’t be combined with uncertainty to produce a common confidence 
interval.  Having two different attributes that describe the accuracy won’t constitute a 
problem in systems where the unit time has been chosen carefully. Those systems will 
have low confidence on the unit time averages and the confidence will decline further 
when the PVs are aggregated over time.   

A numerical value for the confidence of a unit time average where the input consists of 
raw samples can be calculated in accordance with the samples estimate as  

 

( ) ( ) 2
1

22









=

n

Xd
X

σε          (3.1) 

 

where σ 2 is the variance of X in the interval, n is number of all data points in the 
interval and d is the coverage factor that expands the interval to a 95 percent confidence 
level (Klein 2007). The coverage factor should be derived from the student’s t-
distribution with n-1 degrees of freedom but the value two can be used as an 
approximation for systems where n has a minimal value around 20. Hence the 
confidence will be zero for unit time averages computed from intervals containing only 
non-bad data points (non-bad data points will be defined under completeness below). 
Klein introduced this notion to penalize a data stream that has been subject to 
downsampling. Missing data points can be considered as unintentional downsampling 
and boosting the confidence of intervals containing bad data is therefore appropriate. 

If any of the inputs used to construct the unit time averages has been subject to any 
other downsampling technique and therefore been assigned a confidence value, then 
those confidence values has to be incorporated in( )Xε . The new expression can be 
constructed as 
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where ( )∑ iX2ε   is the sum of confidence of the inputs and all parameters have the 

same significance as in equation (3.1) (Klein, 2007).  

The confidence is important for variables that are constructed from problematic 
combinations such as multiplication; an explanation of problematic combinations can be 
found in the section sampling of signals. The importance is guarded when the variable is 
aggregated or combined further. This will hopefully be fully clarified in the description 
of the operations and aggregations, where the confidence will be reduced for linear 
operations and aggregations and increased for nonlinear ditto. Appendix A contains a 
more elaborate description of the concept and motivations of the proposed formulas. 

3.1.4 Completeness 
The completeness of a unit time average will be defined as nothing else but the 
percentage of samples that were included in the calculation of the average (it assumed 
that the averages where calculated over an interval filled with data points separated by a 
fixed distance). There is no absolute interpretation of this quality parameter such as 
those describing the accuracy, but it provides information on both the amount of 
substance there is behind the numerical values and something about the success and 
thereby reliability of the automatic measurement system. Hence, a low completeness 
implies the direct effect of less reliable numerical values due to fewer values used in the 
computation. It also implies an indirect effect on the reliability due to the closeness in 
time between the values used in the calculation and malfunctions in the measurement 
system, which implies that the values used might have been affected by erroneous 
effects (this stipulated indirect effect would be avoided by a system that could identify 
all malfunctions in the measurement process).   

OPC has three categories to indicate the quality of data; good, uncertain and bad (Data 
Access Custom Interface Standard, OPC). The exact definition of the categories is 
server dependent. But assigned an identifier representing the quality of each OPC data 
object is mandatory.  

According to the specification, all OPC-HDA aggregates should omit bad data from the 
calculation. Whether uncertain values should be included or not is server dependent. If 
all data points in the time period are included in the calculation, then the quality is good. 
If any values are omitted from the calculation then the quality of the aggregates is 
uncertain.  

OPC specifies that only good raw values should be used to calculate certain aggregates, 
when can a unit time average be consider good? Extrapolating from the propagation of 
quality in the OPC specification would imply that only unit time averages with 100 
percent completeness should be considered good. No exact definition will be given here 
and the section below will use the term good quality but this should be interpreted as 
unit time averages with sufficient completeness.  A system built after these 
specifications should define an exact level of completeness for values to be considered 
of good quality.  
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3.1.5 Time Stamp  
The time stamp is the point of time (expressed in GMT) that initiates the time period for 
which the value is valid.  

3.1.6 Duration  
The duration is the length of the time period expressed in unit time for which the value 
is valid.  

3.1.7 Active Time 
Active time represents the length of the time period where the PV has been an active 
part of the production process. The length of this time interval should be expressed in 
unit time.   

3.1.8 Standard Deviation 
The standard deviation of the raw data points is defined in the OPC HDA version 1.2 
and that definition will be reused here. Values representing a time period of one time 
unit derived from good raw data have the deviation from the mean of those good data 
points. A constant or a single raw data point has a standard deviation of zero. OPC 
specifies the formula to be used as (3.23).   

3.2 Basic operations 
 
Since PVs of interest have some relationship to the physical reality there are also given 
relationships between process variables in the system. These relationships can be used 
to combine different measured values to obtain values of nonmeasured PVs, 
alternatively values for measured PVs or quantities that aren’t found in the process. The 
set of operations on PVs presented in this section consists of the elementary arithmetic 
operations: addition, subtraction, multiplication and division.  But there is no logical 
need for this restriction; the set can easily be expanded to contain other mathematical 
functions. The elementary arithmetic operations were chosen since they are assumed to 
be the most commonly occurring operations and constitute intuitive examples. A 
general note for all kinds of operations is that there has been a loss of information when 
creating the averaged values representing a time unit. How this affects the value was 
discussed in the section sampling of signals but it also influences other attributes. 

The active time represents the time a PV has been an active part of the process within 
the specified interval for which the process variable is valid, but if the active time is 
smaller than the interval there is no way of telling where in the interval the PV has been 
active. The general rule used to define these operations is: two process variables being 
combined are assumed to be active at the same points in time to the largest extent 
possible. There is no mathematical foundation for this rule, but it can be argued to be a 
good assumption in relation to reality and won’t constitute a problem in a well defined 
system were the unit time is chosen appropriately.    

For what time interval is the output valid? This is another impossible problem, there is 
no way of knowing unless the real time interval of the output is explicitly defined in the 
system. One rule can be stated, an effect cannot occur earlier in time than its cause. 
Therefore, to be consistent with the assumption made about active time, the timestamp 
plus the duration of the output cannot be earlier than the timestamp of any of its inputs 
having active time. The solution to this problem is to give the output the timestamp and 



 16 

duration of the, in respect to time, latest of its inputs. This is to be considered as the 
general rule but it causes some special cases that will be treated in the definitions below 
(for example, no PV should have a greater active time than its duration). An 
implementation with a strict usage of unit time and common timestamps for all PVs 
largely evades this problem.  

The quality parameter confidence is designed to describe the loss of information due to 
variations in the sampling rate. These deviations described by the confidence will be 
assumed to be completely random which implies that the confidence parameters of two 
data object can be assumed independent. The confidence parameters will therefore be 
combined by Gaussian error propagation as in (3.3). (Klein, 2007) 
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Nonlinear operations will add further terms to the equation to compensate for the error 
they might introduce. The general form for confidence propagation for nonlinear 
operations: 
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with the same denotation as in equation (3.2). This penalization can be described as the 
error generated when using unit time averages instead of the data points that used to 
calculate the averages, assuming that there was no covariance between the inputs.  

The last problematic parameter is the standard deviation. Since the correlation between 
the two process variables most probably will be unknown there is no way of calculating 
the standard deviation for the output correctly. The calculation will therefore be 
performed equally to how the operations would be performed on two independent PVs. 
Hence the similarity between the standard deviation and confidence continues. 

A couple of numerical examples of operations between two PV are presented in 
appendix B. The first operation in the example is the addition presented in section 3.2.1 
below. The second is the multiplication specified in section 3.2.3. 

3.2.1 Addition  
The addition of to process variables is not simply the addition of their value parameters. 
Since they represent average values of physical parameters, the active time (denoted 

( )Xa ) of that measurement has to be considered for the calculated output to be a correct 
average value over the new active time. The output will therefore be calculated as the 
accumulated sum of the inputs and thereafter divided by active time of the output. 
Hence, the value of the output Y will be: 
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The timestamp of Y will be set to the earliest of the inputs timestamps and the duration 
according to: 
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Since the two inputs are assumed to have their active time in common to the largest 
extent possible and addition implies that the output is active when either of the inputs is, 
the active time of the output will be the largest active time of the inputs.  

 

( ) ( ) ( )( )21 ,max XaXaYa =         (3.7) 

 

The standard deviation, calculated as for independent variables (Råde & Westergren, 
1998):  
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The confidence, according to equation (3.3): 
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3.2.2 Subtraction 
 
Subtraction of two process variables is almost like addition. The value will, of course, 
be calculated slightly different. But apart from that, the logic and assumptions are the 
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same as for addition and therefore most of the parameters will be defined in a similar 
manner. The numerical Value is calculated as: 

 

( ) ( )
( ) ( )( )21

2211

,max XaXa

XXaXXa
Y

⋅−⋅
=         (3.10) 

 

Everything else can be calculated according to the rules of addition. 

3.2.3 Multiplication  
Multiplication suffers from insufficient information about both activity and variation in 
the inputs. The value, ignoring possible correlation between the inputs, is calculated as:  

 

21 XXY ⋅=           (3.11) 

 

Active time, calculated under the assumption of the largest possible common active 
time: 

 

( ) ( )( )21 ,min XaXa          (3.12) 

 

Standard deviation, calculated as3:  
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where iX represents the observed unit time average and is used as an estimator of the 
expectation value. The confidence, penalized, according to (3.4), to compensate for 
variation within the unit time average inputs:    
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3.2.4 Division 
Is basically the same operation as multiplication, a division can be converted into a 

multiplication with the valid substation 1
23

−= XX  and vice versa. This affects the 
calculation of some attributes, for example, the numerical Value: 
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Standard deviation: 
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Confidence, according to (3.4):  
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3.3 Aggregation 
The aggregations that are to be considered here are those specified as standard 
aggregates in OPCs specification of historical data access version 1.2 (OPC HDA). The 
standard aggregates of the specification contain, for example: arithmetic average, min, 
max and count. The idea is not to provide strict implementations for the standard 
aggregates, rather to provide implementations of meaningful counterparts of them. The 
standard aggregates won’t always have meaningful interpretations since these 
specifications are concerned with unit time averages rather than raw data points. 
However, the list of standard aggregates provided in the OPC standard is used because 
it’s assumed to contain commonly occurring aggregates whose counterparts probably 
are a desired functionality of a system that provides values and aggregates of PVs.   

An incremental structure in the calculations of the aggregates is desirable. An 
incremental structure where each data object is used once doesn’t require the whole data 
set of the aggregation to be kept in memory throughout the calculation (or alternatively, 
thrown away and thereafter retrieved, once again, from the data source) (Holmberg, 
2008).   

Formulas that calculate the aggregates incrementally will therefore be identified 
whenever possible. This will be achieved by dividing the standard aggregates into parts 
that can be calculated incrementally and those parts summarized in the aggregate object. 
The specification of an aggregate object that contains all of the incremental parts is 
mostly for illustrative reasons but can facilitate implementations where all standard 
aggregates of PV are calculated automatically since many of the incremental parts 
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reoccur in several standard aggregates. Predefined automatic calculation of aggregates 
is motivated by large computational time for aggregates of some PVs. A common 
approach is to automatically calculate aggregates over predefined time periods such as 
days, weeks, months and years (Holmberg, 2008). The incremental parts needed to 
calculate the aggregates will be identified in the sections describing each and every one 
of the standard aggregates.  

3.3.1 OPC standard aggregates 
All the definitions concerning the standard aggregates in this section can be found in the 
OPC HDA. The OPC standard aggregates will be regarded, as mentioned in chapter 2, 
as nothing more than a suitable list of mathematical aggregation functions to implement. 
The definitions will therefore be modified to fit a system where the basic data are 
averages. All references to the OPC specification in this section should be regarded as 
proposals, possibilities or expected functionality of the measurement systems that 
constitute the contemplated data sources. 

The specification states that each OPC standard aggregate must be specified by three 
time parameters; start time, end time and sampling interval. The specification defines 
what data points are to be used and how to inter-/extrapolate when data points are 
missing for different combinations of the inputs. (OPC HDA) 

But there is no logical need for implementations of these aggregates to restrict the 
specification of the data included to the three time parameters of the OPC HDA. Any 
other attribute of the data objects can be used to constrain the data included. For 
example, active time can be used to exclude time periods where the PV hasn’t been an 
active part of the process or a minimum limit on the completeness used to select only 
reliable data. No specification of suitable methods for constraining the data will be 
presented here. The formulas and object presented in the sections below are specified 
for a set of unit time averages as input and aren’t affected by the selection of this set.   

The specifications of the standard aggregates use OPCs concept of data quality. The 
quality of the aggregates is specified as: good, uncertain or bad (OPC HDA). Most 
standard aggregates are considered to be of good quality if all raw values in the 
specified time interval are of good quality (OPC HDA). The quality of the aggregate is 
uncertain/subnormal if any of the raw values in the time interval are of uncertain or bad 
quality (OPC HDA). Exceptions to these rules will be described in the corresponding 
section below. This thesis interpretation of good quality was discussed in the section 
3.1.4 and applies to the aggregates in the same manner.   

The sections below won’t specify the completeness or any other quality measure for 
each single aggregate but the overall quality of the aggregate object will be described in 
terms of the three quality parameters: uncertainty, confidence and completeness.  

3.3.1.1 Time average or weighted average 

The definition of the standard aggregate time average is a function that draws straight 
lines between raw data points, thereafter calculates the area under the lines and divides 
the areas by the length of the corresponding time interval (OPC HDA). This definition 
must be slightly modified since this system utilizes active time as a basis for time-
dependent calculations. Time average will therefore be defined as the sum of unit time 
averages weighted against their active time. The interpolative approach of drawing 
straight lines between the data points is redundant since the unit time averages 
constitutes values valid for intervals of time rather than instants. This is calculated as: 
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where n is the number of unit time averages with start time in the time interval. 

The definition of the time average can easily be extended to a more versatile aggregate, 
the weighted average. The time average is a useful concept when dealing with 
accumulating quantities. But time average lacks meaningful interpretation for non-
accumulating quantities such as density; it wouldn’t give any information about the 
average density for the corresponding mass. For the average of density over a time 
period to make sense it has to be weighted against the volume flow over the time period. 
Thus the weighted average:  
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where each ci represents the weight associated with the unit time averages xi in the 
interval.   

These two formulas can be divided into the following incremental parts: 
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incremental parts should be self-evident from the formulas above.  

3.3.1.2 Total  

Total is defined by OPC as the product between time average and the length of the time 
interval (OPC HDA). The time average is the result from a time average call with the 
parameters inherited from the total call and the interval length should be expressed in 
seconds (OPC HDA). The total aggregate is only meaningful for accumulating process 
quantities: 
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No new incremental parts have to be added to the aggregation object to calculate (3.20). 

3.3.1.3 Average 

The OPC definition of the average aggregate differs from time average by not 
considering the length of subintervals. Instead, this function simply adds up the values 
from all good data points in the interval and divides by the number of good data points. 
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Two new incremental parts has to be added to the aggregate object; ∑
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and the 

number n  of good unit time average in the interval.  

3.3.1.4 Count 

Count returns the number of good raw data points within an interval. If any data points 
are non-good they are excluded from the count and this also lowers the quality of the 
aggregate to uncertain/subnormal. The equivalent for unit time averages is self-evident 
and no new incremental part is needed.    

3.3.1.5 Standard deviation 

In the OPC specification the standard deviation is defined as 
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where X are the n good data points in the interval. If n = 1 the functions should return 
zero. This can be rewritten as  
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implying that the standard deviation is constructed from three blocks that can be 
incrementally calculated over the interval, the average value and number of good unit 

time averages is already identified above, the only new part is ∑
=

n

i
ix

1

2 , the sum of 

squares.  

3.3.1.6 Variance  

The variance is the square of the standard deviation and inherits therefore the behavior 
of the standard deviation aggregate.  

3.3.1.7 Regression coefficient and constant 

A regression line is, according to the specification, a “line-of-best-fit” over the interval.  
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A least square-estimate of a line boax ii +⋅=ˆ  is given by  
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assuming that the matrix 
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is invertible.θ̂  is an approximation of the [ ]Tab=θ  that minimizes the sum of 
squares  
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tot 1=ψ . The ot corresponds to the time offset from the aggregates start time 

to the start of the unit time average with index t. The two sums in the expression can be 
divided into parts during the calculations. The parts needed for the final evaluation 
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The incremental parts can be inserted into (3.24) and evaluated as: 
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All the products of sums in (3.27) might look complicated at a first glance, but once the 
sums are computed, evaluating (3.27) constitutes of a few elementary operations.  

3.3.1.8 Minimum/Maximum And Minimum/Maximum actual time 

This OPC aggregates minimum/maximum should simply return the minimum 
alternatively maximum of all good raw values (OPC HDA). The equivalent here is the 
aggregate that returns the minimum/maximum of the unit average values. The 
minimum/maximum actual time aggregates returns the same value but it also provides 
the timestamp of the minimum/maximum values occurrence (OPC HDA). The oldest 
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minimum/maximum should be returned if there is more than one occurrence of the 
minimum/maximum value within the interval (OPC HDA). The quality of the aggregate 
is subnormal/uncertain if any non-good value is lower/higher than the 
minimum/maximum good value (OPC HDA). The min/max value and their timestamps, 
though not incremental in structure, have to be stored in the aggregate object.       

3.3.1.9 Start/end 

The start aggregate must return the value of the first raw value, and the end should 
return the last (OPC HDA). The corresponding aggregate for unit time averages is self-
evident and OPC defines the quality of the aggregate as the quality as that of the raw 
value returned.  

3.3.1.10 Delta 

Delta is defined as the difference between the first good raw value and the last good raw 
value (OPC HDA). Hence the corresponding aggregate for unit time averages returns 
the difference between the first and last unit time average. The quality is 
subnormal/uncertain if any non-good values exist before the first good or after the last 
good value (OPC HDA). The first and last good unit time averages have to be stored 
continuously in the aggregate object to enable incremental calculation of this aggregate. 

3.3.1.11 Duration good, percent good, duration bad and percent bad 

These aggregates correspond to the duration and percentage of the total duration of 
good/bad raw values in the interval (OPC HDA). The equivalent for unit time averages 
can be formed by simply substituting the raw values for the unit time averages. The 
other possible interpretation of these aggregates, considering the percentage of duration 
in the values used to calculate the unit time averages, is covered by the completeness.     

3.3.1.12 Worst quality  

The OPCs definition specifies that worst quality aggregates must return the worst 
quality found amongst the raw data in the interval (OPC HDA). The value of this 
aggregate can be improved by returning the lowest completeness of all unit time 
averages of the interval. Hence the lowest completeness has to be stored in the 
aggregate and updated when it’s appropriate.  

3.3.2 The aggregation object 
The quality of the aggregates should be described by the same parameters as the unit 
time averages. Klein, in her treatment of data streams, specifies the completeness of an 
aggregate to be the average completeness of all incoming tuples, indifferent of the 
aggregate operator used (Klein, 2007). This specification inherited the concept of 
completeness from her work and will therefore perform the aggregation equivalently, 
calculating the completeness as the average completeness of all unit time averages in 
the aggregation. But defining the uncertainty and confidence is problematic, the 
interpretation of the parameters must remain the same and some aggregates, for 
example, duration good, doesn’t even relate to the numerical value of the PVs. The 
propagation of confidence should be conducted according to (3.3) or (3.4), with a slight 
modification of the formula to consider different unit time averages for the same PV 
rather than combining different PVs (Klein, 2007). This formula applied to the weighted 
average will be considered as an adequate confidence measure for the entire aggregate 
object. The specification of confidence for the entire aggregate object is a good 
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substitute for specifying the propagation of this quality parameter for each of the 
standard aggregates. How to propagate the uncertainty is treated in chapter 4. 

  

 
Figure 3 - The aggregate object 

 
The aggregate object and all its attributes are shown in Figure 3. The introduction in 
section 3.3 mentioned that the usage of a single aggregate object isn’t a necessity but 
might save some storage space and computational time. The attributes assigned to the 
aggregate object aren’t either a fixed concept. Other aggregates requiring other 
incremental parts are wanted can easily be incorporated into the concept.  
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4 Uncertainty 
This chapter on uncertainty serves three different purposes: to define the perspective on 
measurement uncertainty of this thesis, to give a brief summary of the requirements on 
uncertainty evaluation for carbon dioxide emission reports to control bodies and finally 
to introduce methods that can be used for automatic computerized uncertainty 
evaluation.  

The theoretical description ventilates uncertainty in measured values and doesn’t 
explicitly describe how uncertainty in averages should be treated. But the extension 
from single values to averages can be deduced from the theory and will be briefly 
discussed in the section propagating uncertainty of averages.  

4.1 Definition of measurement uncertainty  
Every measurement of interest is associated with some error. If a measurement is known 
to be free of error, then the true value of the measured quantity must be known, 
consequently the measurement doesn’t provide us with any new knowledge and is 
therefore off less interest to us. The sources of error in measurements are normally 
divided into two categories; bias and uncertainty. Bias are errors spawned from 
imprecisely determined contextual conditions or imperfect models, leading to 
systematic errors in the measurements. Uncertainty errors appear at random and have 
zero mean. (Gleser, 1998)  

Other definitions of uncertainty do exist and some might be more conceptually intuitive. 
Jan Lindskog introduces, in Mätvärdesbehandling och rapportering av mätvärden, a 
definition where the uncertainty is the lack of focus in a measurement (Lindskog, 2006). 
The ISO guide International Vocabulary of Basic and General Terms in Metrology 
(VIM) considers the uncertainty to be a parameter, associated with the result of a 
measurement, which characterizes the dispersion of the values that could reasonably be 
attributed to the measured quantity (cited in NIST, 2000). 

The concepts are fundamentally different in that the definitions of VIM and Gleser 
regard uncertainties as entities with certain characteristics whereas Lindskog’s 
definition is based on the lack of a notion. Nevertheless they all treat uncertainty by the 
same mathematical methods and those methods are the major concern here.   

A widely adopted set of guidelines for evaluating and expressing uncertainty is given by 
the ISO standard Guide to the Expression of Uncertainty in Measurement (GUM) (see 
Lindskog, Gleser, NIST et al). The approach presented in this and the following section 
aims to be consistent with the GUM. 

4.2 Uncertainty expressed by statistics  
Uncertainty in measurements is commonly expressed in statistical terms. A 

measurement of a PV X can be written as ∑∑ ++= ii evxX̂& where X̂& is the true 

value of X, x the observed value, vi represents biases and ei uncertainties. The 
uncertainties ei can be expressed in terms of a probability distribution (PD) (Cox & 
Harris, 2006). One standard deviation of ∑ ie will be denoted the standard uncertainty 

and ( )Xu  is the notation of the standard uncertainty for an observation of X.   
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The methods presented below don’t treat bias, only how to evaluate the uncertainty. The 
value of a measurement should be corrected for the bias, to the largest extent possible, 
before the uncertainty is evaluated. Note that most corrections will themselves 
contribute to the uncertainty of the measurement.  

4.2.1 The two types 
Measurement uncertainties are normally categorised into two types, type A and type B. 
Their classification is not based upon their nature but on how they are derived. The type 
A uncertainties are derived by statistical analysis of repeated measurements of a 
stationary quantity. The variation of measurement values around the average will, by the 
central limit theorem, result in a normal distributed approximation of the uncertainty. 
(Lindskog, 2006) 

The type B uncertainties are uncertainties that are derived by other methods. E.g. these 
can be uncertainties specified in instrument specifications, manuals, calibration 
certificates or other publications. But any other method of assessment, for example, a 
manual assessment conducted by an expert, will fall into this category. (Lindskog, 
2006) 

The GUM and other publications do often mix their usage of this categorization. They 
sometimes refer to uncertainties of type A or B, whereas it is not the uncertainty itself 
but the method used to identify the magnitude of the uncertainty that is of type A or B. 
Most uncertainties can be identified with the type A method. The reason for this mixed 
usage is convenience. The type A uncertainties will be described by a normal 
distribution whereas the type B might be any statistical distribution. It is this distinction 
that will be of importance when treating uncertainties.  (Lindskog, 2006)  

4.2.2 Combing uncertainty 
The output Ysys for which the uncertainty is desired might be a function of several 

inputs, where ( )nsyssys xxfY ,....,1=  would be an estimator for the PV Ysys and each 

xi is an observation of the corresponding PV Xi. A method is needed to compute a 
combined standard uncertainty for the output Ysys from the known standard uncertainties 
of the inputs Xi. In the GUM, if an approximately linear relation exists between the 
inputs and output, this is achieved by defining the combined standard uncertainty u(Ysys) 
as: 
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where ci is the ith sensitivity coefficient and ( )ji xxr ,  is the correlation coefficient 

between the ith and jth input (Gregory, Bibbo & Pattison, 2005). The correlation 
coefficient is defined as  
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where ( )ji xxu ,  is the covariance. As a result of the definition, the correlation 

coefficients will be 0 for uncorrelated, 1 for fully positively correlated and -1 for fully 
negatively correlated (anti-correlated) variables.  

The sensitivity coefficient ci is the partial derivate of f  with respect to the ith input xi, 

i.e. 
i

i x

f
c

∂
∂= .     

(4.1) can be used to calculate the combined uncertainty when the condition of 
approximate linearity between the output and the inputs of the function f  is fulfilled. If 
non-linearity is present, then the first order terms of the Taylor series that constitute 
equation (4.1) won’t provide enough detail to describe the relation between the input 
and output satisfactory. This can be remedied by adding higher order terms of the 
Taylor expansion. For example, adding the next term to (4.1) would give:  
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where the standard uncertainty u(Ysys) is the positive square root of u2(Ysys). The GUM 
can be consulted for more detailed information on when non-linearity must be 
considered Gregory, Bibbo & Pattison, 2005). 
 

The output distributions usys are often assumed to have approximate normal distribution 
(Taylor & Kuyatt, 1994). However if the effective degrees of freedom for the combined 
standard uncertainty is known then the PD can be treated mathematically like a t-
distribution. The effective degrees of freedom can be obtained by the Welch-
Satterthwaite formula (Taylor & Kuyatt, 1994): 
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where vi is the degrees of freedom of ith contribution uncertainty and veff is the effective 
degrees of freedom of the combined standard uncertainty. The degrees of freedom for 
type A uncertainties are given by the identification process and the type B has to be 
approximated. If the type B uncertainties are specified with max and min limits, these 
are set so the probability that a value would lie outside those limits is very small, then 
the degrees of freedom can be taken to be infinite (Taylor & Kuyatt, 1994). If this 
criterion is not met however, then a more elaborate evaluation is needed, a description 
of such a method is found in the GUM.  

To further complicate and show that the use of effective degrees of freedom is an 
approximate approach, the formula (4.4) gives inconsistent results if any quantities 
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{ }nixi .....2,1, ∈  for which ui is the standard uncertainty, has mutual parts (Willink, 
2008). The two quantities x1 and x2 have mutual parts if both can be regarded as 
intermediate quantities defined by their inputs and they have any input in common 
(Willink, 2008).  

 
Treating uncertainty in the form of standard uncertainty is practical whilst working with 
the uncertainty but it is not suitable entity for accurate reporting. For a normal 
distributed uncertainty, the expression x ± u(x) constitutes a 68% confidence interval, 
i.e. there is a 68% chance that the true value of X lays within the interval x ± u(x). But if 
the uncertainty is represented by a uniform distribution, then the same interval would 
hold 57.7% confidence.  To make the result easier to interpret the GUM defines the 
expanded uncertainty U such as x ± U(x) constitutes a 95% confidence interval. The 
constant k such as ( ) ( )xkuxU =  is called the coverage factor.   

Determining exact confidence-levels and coverage-factors for combined uncertainties is 
difficult when the contributing uncertainties originating from different distributions. 
Especially since the information and knowledge about the contributing uncertainties 
most often are limited and based upon assumptions. Therefore even a correct analytic 
solution might be considered flawed. The practical solution to this problem is to identify 
the situations where the combined uncertainty’s distribution function can be 
approximated by a normal distribution function. (Lindskog, 2006) 

The uncertainty distribution function can be approximated by a normal distribution if 
these criteria are fulfilled:  

• A PV Y is based upon a functional relationship with n input PVs Xi and number 
n is sufficiently large. 

• Almost all uncertainties of the inputs are described by reasonably nice 
distribution functions such as a normal or uniform distribution.  

• The standard uncertainties from the type A and the type B evaluations contribute 
to the combined uncertainty in comparable amounts. 

• The uncertainty contributions from the different inputs Xi can be considered 
independent.  

• There are enough effective degrees of freedom (veff > 20).  

The above defined criteria might seem strict but are actually quite often satisfied. 
(Lindskog, 2006) 

4.3 Uncertainty in CO2-reporting 
This section outlines some of the demands placed by the European Union and the 
Swedish government on how activities must report their greenhouse gas (GHG) 
emission and in particular the carbon dioxide (CO2) emission. These demands shall be 
regarded as a minimum criterion. Methods for uncertainty calculations, proposed by this 
thesis, must fulfill this criterion. Drawing requirements from the particular activity, 
reporting of CO2 emission, is considered suitable since it’s an activity that concerns all 
Swedish process industries.  

The document governing how GHG emissions must be reported within the European 
Union, is the European Union Commission decision 2007/589/EG of the 18 July 2007.  
The decision defines how monitoring and reporting of GHG emissions in accordance 
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with their directive 2003/87/EG of the 13 October that outlines the system for trade with 
emission licenses.  

The European Union Commission decision concerning reporting of GHG emission has, 
in Sweden, been implemented by Naturvårdsverket. Their result can be found in the 
regulation NFS 2007:5. According to 15 § in this regulation should:  

All emission and utilization, included in the law ((2004):1 199) concerning the trade of 
emission allowance, shall be supervised. The supervision shall be concluded by 
calculations or by continuous measurements in a flue gas channel4.  

But in 24 § they’ve added a way out for activities that would have a hard time 
supervising according to 15 §. It states that the activity might use an alternative method 
for the supervision if the method specified in 15 § isn’t technically possible or involves 
unreasonable costs. The alternative method must be applied with at least surveillance 
level 1 for almost all fuels/materials; the exceptions are fuels/materials that contribute 
very little to the total emission5.   

A system where a model of the process is used to calculate the carbon dioxide emission 
would fall under the category alternative methods specified in 24 §. If an alternative 
method is used, then a full uncertainty evaluation of the emission value has to be 
performed and the combined uncertainty has to be within the limits, showed in Table 2, 
for the corresponding type of activity6.   

Typ of facility 

Max uncertainty in the 
reported yearly CO2 

Emission 
Category I ± 7.5 % 

Category II ± 5.0 % 

Category III ± 2.5 % 

Table 2 - max uncertainty in the reported CO2 emission 

4.3.1 The uncertainty evaluation  
The first appendix of the NFS 2007:5 explicitly states what the uncertainty evaluation 
must include. The activities must have knowledge about the uncertainty concerning the 
equipment utilized to perform the measurements. The assessment of the equipment 
should consider:  

• The uncertainty for all components in the system. 

• The uncertainty contributed by the calibration or lack of calibration of the 
equipment used. 

• Possible further uncertainty depending on how the equipment is used in practice. 

The uncertainty specified by the equipment’s supplier shall be used whenever possible. 
A complete analysis of the equipment’s uncertainty must be performed if no such 
specification is available. Calculations must in both cases consider necessary 

                                                
4 Translated freely by the author 
5 To be more specific, it is those fuels/material that together accounts for 1000 tons or less of a facility’s 
carbon dioxide emission per year that can be excepted. Alternatively a group of fuels/materials that 
together represents less than 2%, up to a maximum of 20 000 tons per year, of the facility’s total emission   
6 For a description of the categories, consult NFS 2007:5, the purpose of the table is to hint the magnitude 
of allowed uncertainties.    
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corrections due to effects of the actual utilization of the equipment. These effects can be 
the result of calibration, the physical environment around the equipment, the age of the 
equipment or maintenance.  (NFS 2007:5) 

 

The reported uncertainty must be expressed as a combined uncertainty for all 
components in the measurement system. Furthermore, the uncertainty must be 
expressed as relative uncertainty, a percentage of the reported value at a confidence 
level of 95%. (NFS 2007:5) 

Calculations that combine sources of uncertainty must be performed according to the 
propagation law specified in several alternative sources, one of the sources being the 
GUM7. The regulation provides an exact interpretation of the propagation law, i.e. 
specific formulas for the contemplated cases. These are products and sums of mutually 
uncorrelated uncertainties and their correlated counterparts. The proposed formulas for 
propagation of correlated sums and products are of a conservative nature, they 
correspond to the worst case scenario which is fully positively correlated variables. 
Uncertainties should be regarded as correlated if there is any reason to suspect 
correlations. For example, measurements that are conducted by the same model of 
sensors and in the same environment provide reason to suspect correlation. The four 
formulas are summarized in Table 3 (Ui and Utotal are the uncertainties expressed as 
percentages at a 95 percent confidence level). 

Independent sums 

n

nn
total xxx

xUxUxU
U

+++
+++

=
....

)(...)()(

21

22
22

2
11  

Dependent sums 

n

nn
total xxx

xUxUxU
U

+++
+++

=
....

)(...)()(

21

2211  

Independent products 22
22

2
11 )(...)()( nntotal xUxUxUU +++=  

Dependent products  )(...)()( 2211 nntotal xUxUxUU +++=  

Table 3 – the formulas for propagation of uncertainties presented in NFS 2007:5 

4.3.2 A more elaborate interpretation 
The simplified formulas for calculating uncertainty supplied in NFS 2007:5 have both 
advantages and disadvantages. An obvious advantage is the simplicity of the 
calculations. Their application becomes especially simple if no considerable 
modification has been done in the system during the time period for which we are 
interested in the uncertainty of the measurements. For example, an activity that is about 
to report of the yearly emission of GHG for a non modified system the uncertainty 
calculation would consist of solving one equation, the equation being a combination of 
the formulas in Table 3.  

                                                
7 Alt. ISO-5168:2005 Measurement of fluid flow – Procedures for the evaluation of uncertainties 
 Annex A of Good Practice Guidance and Uncertainty Management in National Greenhouse Gas 
Inventories 
 annex A of Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories 
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The major disadvantage of this simplified approach is the penalty the calculation 
imposes on dependent variables in most cases, especially since the worst case scenario 
is quite uncommon in reality.  

NFS 2007:5 states that the calculations used shouldn’t be more detailed than necessary. 
The directive brings out the conservative propagation laws, but a more detailed 
approach can be argued necessary in some cases, correlated errors are severely 
penalized and their tolerance limits are quite low.  

NFS 2007:5 refers to several guides when stating that the propagation law should be 
used to combine uncertainties. But these guidelines are not entirely consistent. For 
example, the IPCC states implicitly that the uncertainties should be expressed as 
percentages and thereafter combined as the square root of the sum of squares8.  

A statement that all these guidelines have in common is that they bring out the option to 
calculate the uncertainty by any method of choice, that being if the method is valid and 
the reporting activity presents good documentation the methods used. Monte Carlo 
simulations are promoted as a suitable method by both the IPCC and the GUM. (IPCC 
1, 1996) 

The sections above constitute some of the arguments for more detailed methods than the 
propagation law. The propagation law produces an unnecessary large uncertainty in 
some scenarios, the presentation in NFS 2007:5 is somewhat flawed and the reference 
cited by the directive all bring out more elaborate methods.    

4.4 Propagating the uncertainty of averages  
The methods presented in this chapter are normally used to propagate uncertainties of 
single measurements. Propagating uncertainties in averages is an equivalent operation 
and the methods can therefore be applied to calculate averages without modification. 
The only requirement is that the PDs and the corresponding standard uncertainties 
describe the uncertainty of averages values.    

The uncertainty of the aggregation objects is a special case of averaging. Theoretically, 
if the uncertainty evaluation is completely exhausting and all bias is eliminated by 
corrections, then the uncertainty of the weighted average could be calculated as: 
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where ci are the normalized weights. A more pragmatic approach would stress that the 
measurements errors described by uncertainty are likely to be autocorrelated. These 
autocorrelations have been accounted for in NFS 2007:5, stating that the uncertainties of 
equivalently measured observations of a PV must be considered fully positively 
correlated. This corresponds to the formula:  

 

                                                
8 As long as none of the individual uncertainties are greater that 60 percent of the sum of squares of all 
individual uncertainties.  
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4.5 GUM framework algorithm  
The theory presented in the sections 4.2 and 4.4 can be used to construct an algorithm 
that propagates uncertainty between interconnected components in the system. One such 
algorithm is outlined in Propagating uncertainty in instrument systems by B.D. Hall. 
The basic algorithm presented in this section is the same as Hall’s algorithm and his 
work should be consulted for a more elaborate presentation.  

In section 4.2, a quantity Ysys was expressed as a function ( )nsyssys xxfY ,....,1=  

where the inputs also might consist of quantities that might contribute some uncertainty.  
This implicates the more general representation  

 

( )jjj fx Λ=           (4.7) 

 

where jΛ  is a set of input quantities, stating that each quantity can be considered as a 

composition of a set of simpler functions. This represents a recursive structure where 
the inputs of the composite quantity xi also can be stated on the form of equation (4.7). 
The basic inputs or base cases of the recursion would be represented by the case where 

jΛ  is an empty set. For example:  

( )
65

4321
6,......,1 xx

xxxx
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−==       (4.8)

  

can be rewritten as:   

 ( )
9

10
10,9 x

x
xxfy syssys ==         (4.9) 

where 

( ) 656599 , xxxxfx +==         (4.10) 

( ) 87871010 , xxxxfx −==         (4.11) 

and 

 ( ) 212177 , xxxxfx ==         (4.12) 

( ) 434388 , xxxxfx ==         (4.13) 
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The example illustrates how functions of several inputs can be divided into a set of 
simpler functions. It should be obvious from this example that this division into simpler 
functions would allow for complicated formulas to be calculated recursively by defining 
as small set of basic functions.   

This notation has a natural extension to handle uncertainty. Let’s first define a module. 
A module mj would be an entity that consists of an output value xj and xj’s components 
of uncertainty. A component of uncertainty is the sum of products between each 
uncertainty of the input and the components sensitivity to that input.  
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These components of uncertainty must remain parameterized on the inputs, i.e. the 
components of uncertainty of the inputs ( ) jkki xxu Λ∈,  should not be evaluated nor 

substituted with their numerical values. The index i in ( )ki xu  is meant to signify this 

distinction between the standard uncertainty of ( )kxu  which has an explicit value and 

the component of uncertainty ( )ki xu  that should be evaluated in regard to its context.  

Combining modules into larger ones follow the same scheme as introduced above. The 
modules being combined into a new module are to be considered as inputs and the new 
module is the output-variable. It’s to provide this opportunity that the components of 
uncertainty must remain parameterized at each module and thereby account for all 
correlation when evaluating the uncertainty for the final output. Evaluating the 
uncertainty for this final output xj consists of combining all the components of 
uncertainty at the module mj as in the formula (4.1).     

The discussion of linearity and the addition of higher order terms of the Taylor series 
apply here as well. In this particular presentation this would consist of adding higher 
order terms of the Taylor series to (4.14).  

4.6 Monte Carlo 
Another approach to calculating the uncertainty in measurements is by Monte Carlo 
simulations. The Monte Carlo methods can solve many of the problems where the 
assumptions of the GUM framework do not apply. It’s also recommended as a tool for 
validating the calculations made according to the GUM framework (Cox & Harris, 
2003). Another advantage is that the results of a Monte Carlo simulation provide more 
information than that of a GUM framework calculation. The Monte Carlo simulation 
provides a discrete approximation of the probability density function (PDF) whilst the 
GUM framework calculation provides the standard deviation of some unknown PDF.  

This increased amount of information can be used for lots of different purposes, some 
aspects that are interesting to this work are: an exact coverage factor can be calculated 
for symmetric PDFs, a confidence interval for asymmetric ditto and information is 
gained on whether the output PDF has become skewed or biased due to correlations 
(Papadopoulos 2001).   



 35 

This increased amount of information does of course come with a price. The 
convergence rate of Monte Carlo simulation is slow, 5.0−n   to be precise (L’Ecuyer, 
2003). This has shown to be problematic for high dimensional problems since both the 
generation of pseudo-random numbers and solving the equation consumes computation 
time (L’Ecuyer, 2003).     

4.6.1 MC theoretical description 

A Monte Carlo (MC) method for evaluating the uncertainty of a quantity ( )XfY =  

where X is a vector of input variables ( )NXXXX ,......,, 21=  consist of repeating the two 

steps; adding random error terms to observed values of the input ( )Nxxxx ,......,, 21=  
and thereafter calculating the randomized output y from the randomized observations. If 
the random error terms are drawn from the PDFs ( ) { }Nig iX i

,....,2,1∈∀ξ  of the inputs 

then the randomized outputs y will be observations from the PDF ( )ηYg  corresponding to 

observations from the uncertainty of y’s PDF with the expectation-value shifted by the un-
randomized output y. As the number of iterations of the two steps in the procedure goes to 
infinity, the randomized outputs converge to a discrete representation of( )ηyg . 

Interesting characteristics of the Monte Carlo method is that the function f might be 

any mathematical function and that the PDFs ( )iX i
g ξ  might be any PDFs, the inputs can be 

correlated and can even originate from the same multivariate PDF. 

  
The number M of simulations carried out can be fixed, decided before the start of the 
iteration, or halted by some stop condition for when enough accuracy has been 
achieved. Using a stop condition might be the more intuitive approach in uncertainty 
evaluation. This stop condition can be based upon: the expectation value, standard 
uncertainty or limits of the confidence interval. These are all parameters of interest and 
are therefore suitable candidates for the stop criteria.  

An example of an adaptive method using stop conditions: if the values y(h) , u(y(h)), 
ylow

(h), yhigh
(h)  are calculated for each Nth iteration, the index h signifies the number of N 

iterations that has been performed. The y(h)  is the approximated expectation-value of 
the last N iterations,  u(y(h)) is the approximation of the standard uncertainty, ylow

(h) the 
lower and yhigh

(h) the higher limit of the approximated 95% confidence-interval. After 
each N iterations (apart from the first), the arithmetic mean of the intermediate values 
y(h) are calculated. The standard deviation sy associated with the arithmetic mean is 
formed as a measure of degree to which the calculation has stabilized. The counterparts 
of the arithmetic mean and standard deviation are determined for u(y(h)), ylow

(h) and 
yhigh

(h). Then if the largest of 2sy, 2su(y), 2sylow and 2syhigh is smaller than the degree of 
accuracy needed in u(y) the calculation can be regarded as stabilized. (Cox & Harris, 
2006) 

 

The algorithm used for the MC simulations in this work:  

While (The accuracy is not achieved or N <2){ 
Repeat M times{ 
Generate the vector xj from the inputs and sampling from the PDFs of the inputs 
Evaluate the model ( )jjNM xfy =+  
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 } 

Calculate the estimate of the output for the M iterations, ∑
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Update the overall ŷ and ys  by weighting in the values of Mŷ and M
ys  

Increment N 
} 
Sort the values yj, { }NMj ,.....,2,1∈ , in non-decreasing order, the sorted values then 
represent a discrete representation of the approximation of the output PDF. 
 
The above algorithm outlines one particular MC implementation. The details can differ 
a lot between implementations.  

4.7 Quasi Monte Carlo 
As previously mentioned an issue with MC simulations is the slow convergence rate. 
This property has lead to the development of quasi-MC (QMC) methods. In QMC the 
pseudo-random numbers used in MC has been replaced by quasi-random numbers. The 
notation quasi-random numbers is somewhat misleading as they are normally 
deterministically distributed point sets and not random at all but. If strictly quasi-
random numbers are used in a simulation it might result in a biased result. This can be 
prevented by introducing random shifts between repeated simulations with the same 
deterministically distributed point set. 

4.7.1 Low discrepancy sequences 
A design criterion of pseudo-random numbers is that they are uncorrelated, leading to 
uncorrelated dimensions in the noise sets. This often results in overlapping and 
clustering of data points, leading to slow exploration of the space (L’Ecuyer, 2006). A 
more efficient approach is to explore the space deterministically. The gain in efficiency 
does come with a cost, as a deterministic exploration of the space defies the founding 
assumptions of the MC methods since it is associated with a deterministic error. To 
acquire some of the efficiency of deterministic distribution but to keep the required 
randomness, predetermined sequences are used to distribute some points whereupon the 
sequences receive a random shift on each dimension to form the remaining points.  

The most basic implementation can be described as follows: the predetermined 
sequences are used to distribute N points in a unit-hypercube of same dimension as the 
input dataset. The model is then evaluated for those N points. The points correspond to 
the random errors of the models inputs and since these might not be uniformly 
distributed over the interval [ )1,0 , the inverse of their PDFs must be used to calculate 
the sought value. Afterwards, another point from the same unit-hypercube is drawn 
randomly. The value of this point is added module 1, coordinate by coordinate, to each 
of the N points to construct the next N points that can be used to evaluate the model. 
Since the shift is random in each dimension, the N original points and the N points 
generated will be uncorrelated and the method has therefore revived the randomness 
that guarantees convergence to a non-biased value.  
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4.7.2 Niederreiter Sequences  
As mentioned above QMC methods use predetermined sequences, more specifically 
low-discrepancy sequences. The most commonly used low-discrepancy sequences are 
the (t,s)-sequences, where s is the dimensionality and t can be regarded as a quality 
measure of the sequence (Niederreiter, 1988). The sequence to be used here is a 
Niederreiter sequence in base 2, chosen partly for practical reasons. The Niederreiter 
sequence in base 2 have a better t-value than the commonly cited Halton, Faure and 
Sobol sequences (Niederreiter, 1988). But the Niederreiter-Xing sequences often 
improves on the t-value of the Niederreiter sequence in base 2 (Dick & Niederreiter, 
2008).  

Does the use of the low discrepancy sequences improve the convergence rate of the 
standard MC method with pseudo-random numbers? A theoretical bound for the 
convergence rate can be derived from the koksma-hlawka inequality9. It has been shown 
that it’s possible to create (t,s)-sequences with a discrepancy ( )nPD  (and also 

convergence rate) of  

 

( )( ) 







Ο=Ο

n

n
PD

d

n

log
          (4.15) 

 

where Pn is a sequence of length n and dimension d (Niederreiter, 1988). Many common 
sequences such as Halton, Faure, Sobol and Niederreiter do converge at this rate. Their 
convergence rates differ by a constant and the sequences are presented in an order of 
decreasing size for this constant (Niederreiter, 1988).   These convergence rates beats 

the ( )2
1−Ο n  of standard MC methods asymptotically (L’Ecuyer, 2006). But the 

dimensionality has a large impact on the convergence rate of QMC-methods for more 
practical values of N. If N ≤ 109 then the theoretical convergence rate of QMC beats that 
of MC only for low dimensionalities, the breakpoint is about 7 or 8 (L’Ecuyer, 2006).     

Fortunately, the theoretical bound on the convergence rates doesn’t fully reflect the 
practical aspects of the methods. QMC has successfully been shown to beat MC for 
problems with over 1000 dimensions (L’Ecuyer, 2006). This can to a large extent be 
explained by the notion of effective dimensions. Effective dimension can in general 
terms be described as the number of dimensions needed to express the functionf . More 
distinct definitions are based on the sense the function f can be said to have effective 
dimension s. For example,   f  is said to have effective dimension s in the superposition 
sense if f  is well approximated by a sum of s dimensional functions (Owen, 2002). Put 
in more common terms; if f is a function of n variables that can be well approximated 

                                                
9 Let f  be the function from the inputs to the output,µ  be the expectation-value of output and Qn the 

Monte Carlo estimator for µ . Then consider the Banach space F of functions, where µ−f measures 

the variability of f  and ( )nPD  is a measure of the discrepancy of the point set Pn. If ( )nPD  is chosen 

so that  ( )nn PDfQ µµ −≤−   holds for all Ff ∈ , then the error will converge at least as fast as 

( )nPD  if the variability of f  is bounded (L’Ecuyer, 2006).   
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by a function of n/2 variables, then f  is said to have an effective dimension. For more 
strict definitions and descriptions see the references.  
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5 Using a process model to improve/replace 
variables 
If multiple measurements are available for a PV they can be combined to improve the 
accuracy of the estimate and thereby lower the uncertainty (Kessel, Berglund & 
Wellum, 2008). In this system, multiple measurements would consist of different ways 
of evaluating the PV. For example, the value of a PV A might be measured directly by a 
sensor and calculated from sensors measuring other PVs. Calculation from sensors 
measuring other PVs is possible in the presence  of a model that specifies their physical 
relationship with A. Two issues concerning the use of multiple measurements will be 
addressed below. Firstly, under what conditions can two or more approximate value 
sources of a PV be combined to improve accuracy? Secondly, how should the values be 
combined to provide the lowest uncertainty? 

5.1 Consistency 
Averaging of several complete measurements of a PV can be used to achieve a better 
accuracy. The term complete measurement aims at distinguishing these replicated 
measurements consisting of evaluations for both value and uncertainty from the type A 
evaluations that can be used to evaluate the uncertainty for their average (Kessel, 
Berglund & Wellum, 2008).  

This can be illustrated by an example using the GUM approach to uncertainty described 
above. Let Y be the arithmetic average of the two normally distributed variables X1 and 
X2, then the expanded uncertainty of Y, according to (4.1), will be: 
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where k is the coverage factor. If k is chosen as 2 then ( )YUY ±  is a confidence interval 
at approximately 95 percent confidence level. If x1=100 and x2=80 are observations of 
X1 and X2 with u(x1)=u(x2)=1, then 9022

1
12

1 =+= xxy  constitutes an observation of Y 

with the expanded uncertainty: 
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for the observations x1, x2 with a coverage factor k=2. The large differences between the 
measurements in the example, together with their relatively small uncertainties raise the 
question whether they can be considered to be good approximations of the same 
physical quantity. If the probability is 0.95 that the true values of X1,X2 and Y lie within 
their respective confidence interval, shouldn’t these intervals be almost the same or at 
least overlap?   

The scenario in the example wouldn’t occur if all measurements had been conducted 
successfully, all the uncertainties associates with the measurements had been identified 
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and all calculations on the results of the measurements were based on exact 
relationships.  

But a system, built after the ideas presented here, includes lots of assumptions that may 
be invalid. The concept of consistent measurements will therefore be used to test these 
assumptions and improve the accuracy in values of the PVs. 

Measurements are said to be inconsistent if the results of multiple replicates of the same 
measurement are not equivalent. One way of verifying the consistency is therefore to 
perform an equivalence test. The test is to check, for each Yi in the weighted sum: 
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           (5.3) 

 

that the relationship ( )YYukYY ii −⋅≤−  hold. A coverage factor k = 2 corresponds 

approximately to a 95% confidence level if all sources of uncertainty are normal 
distributed. (Kessel, Berglund & Wellum, 2008) 

The exact value of the coverage factor for different confidence levels probably won’t be 
known unless all input uncertainties are normal distributed.  But the coverage factor of 
the normal distribution can be used as an approximate value of the coverage factor for 
most combined uncertainties (Kessel, Berglund & Wellum, 2008). However, if the 
approximate value of the coverage factor is used without regard to the specific inputs, it 
lowers the quality of the test since it changes the corresponding confidence level. This 
approximate approach of handling the coverage factor will be used in lack of better 
options.  

  
If the consistency check fails then the measured/calculated values cannot be combined 
to produce a more reliable value for the process variable (Kessel, Berglund & Wellum, 
2008). Two options are available to produce a reliable value; removing values from the 
combination according to some reliability-criteria or by manipulating the values into 
being consistent. 

The later alternative would consist of penalizing the uncertainty of the measurements. 
One way of achieving this is to add small terms of zero mean noise with equal variance 
to each measurement. Thereafter check for consistency again and if the measurements 
still are not consistent, then the procedure can be repeated until they are. (Kessel, 
Berglund & Wellum, 2008) 

5.2 Weighting 
If different complete measurements can be combined to lower the uncertainty in the 
approximation of a PV, then how should these measurements be combined to produce 
the best possible result?  

Fusion methods, methods for combining sources to achieve higher performance than of 
the individual sources have been studied for centuries. Obviously the problem is easily 
solved if all error distributions and their correlations are known, but this is often not the 
case. Early fusion rules assumed independence between the sensors errors whereas the 
problem becomes simplified. Other fusion rules not depending on this assumption have 
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been developed. For example, Rao provides in generic sensor fusion problem: 
classification and function estimation a method, not based upon the assumption of 
independence, but using data from several samples. (Rao, 2004) 

The problem of combining different measurements to produce the most accurate value 
of a PV corresponds to find the best weights ci for the weighted sum of N variables: 
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The optimal weights would normally be the ones that minimize u(Y) and thereby 
produce the most accurate value of Y. But the problem is harder in this case since the 
values of the process variables are required to be consistent, the full optimization 
problem is to find, if they exist, the weights that minimizes the objective function in 
(5.5).  
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Solving (5.5) for each process variable at each time interval would be too 
computationally heavy; it’s a nonlinear optimization problem that can include a large 
number of variables.    

An alternative approach, promoted by Lindskog (2006), would be to weight according 
to the uncertainties assuming mutual independence. This method might not produce the 
optimal weights but allow for the weights to be produced with only few elementary 
arithmetic operations per component of uncertainty. The standard uncertainty for the 
output Y, calculated according to (4.1) with zero correlation, is: 
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for inputs Xi with uncorrelated uncertainties. If the output Y is a sum weighted by a 
normalized set of weights ci, such as: 
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then  
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are the normalized weights that minimize the uncertainty in Y (Lindskog, 2006). But for 
inputs Xi that are to be combined into a process variable there is also the notion of 
consistency. The weights can only be used if the output produced is consistent with the 
inputs. This will be handled by checking the consistency and if the test fails, then throw 
away the most uncertain input and thereafter recalculate weights and redo the 
consistency check. A small test and illustration of the consistency check and weighting 
is presented in section 7.2.  
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6 Test case and Implementation 

6.1 The java implementation 
A small java based application was created to illustrate the definitions above and to 
evaluate some of the proposed methods. The time span of this project didn’t allow for 
the development of a full blown system based upon the ideas presented above.  A test 
application that allows for an assessment of the uncertainty evaluation methods and 
combination of consistent measurements seemed suitable.   

6.1.1 Basic description 
The input of the application is limited compared to a full blown system; it takes a XML-
document as input rather that continuously produced unit time averages. The XML-
document must specify an expression consisting of a combination of any number of 
inputs and the values for the inputs. The combination must consist of the basic 
operations specified in the section with the same name. These inputs are converted a 
tree structure that corresponds to the expression, nothing is stored and all test and 
evaluation are performed on the tree structure.  

A large part of the application consists of an object called Variable and its subobjects. 
These are used to construct the tree structures mentioned above, thus acting as both 
memory and supplier of rules for how the structure is evaluated. The object hierarchy is 
shown in Figure 4. 

 

Figure 4 - the object hierarchy 

6.1.2 The Monte Carlo implementation 
This section aims to clarify the implementation of the MC methods, to show how the 
results in the uncertainty evaluation below were obtained. The evaluation of the MC 
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methods uses the tree structure but the methods themselves are implemented in the class 
Monte Carlo that can be found in appendix C. The code is included to represent the 
exact structure of the algorithms and won’t be explained further. Three important details 
in the implementation that aren’t explained by the code is the pseudo-random number 
generator, the Niederreiter sequence generation and the random multivariate normal 
distribution generator. They are described in the subsequent sections.  

6.1.2.1 Random number generator  

The generation of pseudo random numbers is a crucial part of MC-simulations and there 
are differences between different generators. Many of the commonly used random 
number generators fail to show satisfying randomness.  

Mersenne Twister algorithm was used for the generation of pseudo random numbers. 
This particular implementation was provided as a part of the Math-uncommons library 
(Uncommons Maths). 

The generator has a prime period of 219937-1 and occupies a working area of 624 words 
(As a comparison, the rand-function has a period of ~231 and use a working area of 1 
word)10. It generates numbers as fast as most modern generators and is almost as fast as 
the rand-generator included in java.  It has also shown promising statistical properties 
and passed several tests including Marsaglias diehard test. (Matsumoto &  Nishimura, 
1998) 

Tests were performed to ensure that the large working area of the Mersenne Twister 
didn’t affect the computational time in this particular implementation. The tests 
concluded that the time consumed by the Mersenne Twister generator was 
approximately equal to the time needed by rand to generate the same amount of 
numbers, regardless of the magnitude of that amount. Nor did the larger working space 
affect the computational time needed to perform MC simulations. 

6.1.2.3 Generation of Niederreiter sequences 

This functionality is supplied by a library called SSJ developed at the Département 
d’Informatique et de Recherche Opérationnelle, at the Université de Montréal (designed 
and supervised by Pierre L’Ecuyer). The Niederreiter sequence in base 2 is 
implemented in a class named NiedSequenceBase2. The class allows the parameters of 
the sequence to be specified; the number of points in the sequence, the number of output 
digits and the dimension. (SSJ API Specification) 

6.1.2.2 Random Multivariate normal distribution generator 

Another difficult part of the Monte Carlo is the extension from pseudo random number 
generation to generation of correlated pseudo random numbers. This functionality is 
also supplied by the SSJ library. The class used in this implementation uses a method 
based on Cholesky decomposition of the covariance matrix. The decomposition is 
defined as Σ = AA t where Σ is the covariance matrix and A is a lower-triangular matrix. 
Observations of the multivariate normal distribution defined by  Σ and the expectation 
vector µ can be calculated as X = µ + AZ , where Z is a vector of independent standard 
normal distributed variables. The class uses an external source for the generation of the 

                                                
10 The working area can be regarded as a non-specified type of memory and a word is a number of bytes 
that a processor considers as a unit of data. Hence, the normal wordsize today would be 32 bits.   
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vector Z, the methods for number generation presented in the section above are used for 
this purpose. (SSJ API Specification)     

6.2 The test cases 
 
Three different cases were used to verify the implementation and to test the proposed 
methods. They serve different purposes and have therefore been selected by different 
criterions. The first denoted M1 is a small fictional model which is simple enough for 
the value and uncertainty to be verified manually. It also serves as a contrast to the 
much larger model M2 in the evaluation of methods to calculate the uncertainties in the 
values.  

These models can be illustrated as trees where each node is an object from the hierarchy 
presented in Figure 4. M1 is illustrated in Figure 5, the left tree represents the structure 
of the model and the right illustrates the values at every node after evaluation. The 
inputs numerical values presented in the figure are used for every test that involves M1.  

 
Figure 5 - Illustrations of M1 

The second case M2 is a model of a real Swedish process industry’s CO2 emission into 
the atmosphere. It serves the purpose of testing how the method for propagating 
measurement uncertainty handles models that include a large number of inputs and 
operations. Table 4 shows the exact number of input and operations in M2. This is 
presented as a table instead of a tree structure simply because the model is too large. 
The number nodes can be regarded as an approximate of the trees size; the number of 
nodes are equal to the sum of all occurrences in Table 4, except the row PVs 
corresponding to the dimensionality of the model.  The data used for the evaluation of 
this model is average values from one hour of production, the specific hour was chosen 
at random.  
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Node type Nr. of occurrences 

Constants 184 

PVs 102 

Occurrences of PVs 302 

Sum 249 

Sub 10 

Mul 240 

Div 41 

Table 4 - Occurrences of node types in M2 

 
The last test case M3 is a small model that is included to illustrate combination of 
consistent measured values. The specific model used here was not chosen on any 
specific criteria except that it was two small models of the same physical quantity. The 
values used in the evaluation are the 24 hourly averages that constitute a day of 
production. M3 is illustrated in Figure 6 below.  

 
Figure 6 - illustration of M3 
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7 Results 

7.1 Uncertainty  
The three different methods for automatic evaluation of measurement uncertainty were 
tested with the two test models M1 and M2. The test serves two purposes in the 
selection process of suitable method to handle uncertainty. The first purpose is to verify 
that the methods provide reasonable and corresponding answers in, at least, these 
particular cases. The second is to provide a hint on how fast the different methods are 
and if they might be fast enough to be used for this purpose.  

The stop condition used in the MC algorithms is based only on the relative 
improvement in the value and standard deviation over a series of iterations. Note that 
other stop conditions have been proposed and the conditions presented in the theoretical 
section about uncertainty also incorporate the standard uncertainty, upper and lower 
limits of the confidence interval. A rather large number of iterations are run before and 
between each time the stop condition is checked. This is supposed to reinforce the 
credibility of the stop condition by reducing the probability that the method stops after 
only a few “lucky” numbers. The stop condition is verified after each multiple of 1000 
iterations for the standard MC method, 8192 for the simulation of M2 with QMC 
method and 1024 for M1s QMC simulation. There is also a limit to the maximum 
number of iterations before the simulation is stopped and considered nonconvergent. 
This limit was set to 100000 for the standard MC and the multiple below 100000 for the 
QMC simulations. Longer runs will show to serve little purpose since the computational 
time would be too long and this particular implementation and the test computer limits 
the number of data points to slightly above 100 000 due to the restricted amount of 
available memory. The relative improvement in the value and standard deviation is 
calculated as the difference between value/standard deviation calculated using all 
iterations performed and the value/standard deviation calculated at the last verification 
of the stop criteria (hence the improvement gain using another n iterations, n being 
1000, 8192 or 1024 as described above). This improvement will be referred to as 
accuracy in the results below, thus the accuracy should be interpreted as a relative rather 
than absolute measure, describing how far the computation has converged. A statement 
of the accuracy in absolute terms and more elaborate stop conditions is desirable for real 
applications of MC methods but serves little purpose for these tests.   

An uncertainty was assigned to all PV that corresponds to basic measurements in the 
models (denoted inputs in section 5.2). These uncertainties were normal distributed and 
with a standard deviation set to one percent of the respective measurements value. 
Strictly normal distributed uncertainties were used for no other reason than to facilitate 
the implementation of these tests. An extension of the application to include 
uncertainties identified by the type B method shouldn’t change the results drastically 
and wouldn’t pose any problems to implement11. It would be possible to extend the 
application to handle uncertainties described by any continuous probability distribution 
(Cox & Harris, 2006). The covariance between the different uncertainties was specified 
by the correlation matrix in Figure 7. Additional results for M2 were produced for 

                                                
11 Since the implementation is based upon the generation of pseudo- and quasi-random numbers where 
upon the inverse of the probability density function is used to calculate the normal distributed numbers. 
So all that is needed to make the algorithms support other probability distributions is to implement the 
inverse of their probability density functions. 
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completely uncorrelated uncertainties, e.g. a covariance matrix with the diagonal 
consisting of the uncertainties variances and all other elements set to zero. Most of the 
results were produced with correlated inputs since it constitutes a more interesting case 
where the output PDF might become asymmetric and biased.  
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Figure 7 – the correlation matrix 

7.1.1 Time and uncertainty for M1 
 

Results of the GUM algorithm for M1 
Calculated value -800 

Standard uncertainty 9.55249 
Time to evaluate the uncertainty 10 (ms) 

Table 5- results of the GUM algorithm for M1 

Tables 5-7 show that the uncertainties calculated by the three methods were about 
equal12 and this result was concluded by a manual evaluation. Their estimation of the 
value followed the same pattern. The largest distinction is a slight difference found in 
the third significant digits of the standard uncertainties. Errors of this magnitude can be 
expected whit the stop conditions used and would be insignificant in practical 
applications since measurement uncertainty is an approximate concept.    

Table 7 shows that the standard MC method converges for the lowest accuracy, 
converges sometimes for the mean but not for the highest. It also shows expected 
characteristics over most of the properties. The convergence rate cannot be fully 
evaluated due to the minimum and maximum constraint on the number of iterations. 

The theoretical convergence rate is 2
1−n  , implying that a 100 times more iterations are 

needed to improve the accuracy by one decimal. The results in Table 7 don’t fully 
comply with the theory. The difference between a relative accuracy of four and five 
decimals is only 3-4 times the number of iterations. The highest accuracy doesn’t 
provide any further information on this clash between theory and practice since it didn’t 
converge within the maximum number of iterations.    

The result of the QMC simulations doesn’t follow the same pattern as those of standard 
MC. The simulations converged within the maximum number of iterations every single 
run for the two lower requirements on the accuracy and sometimes for the highest. 
Table 6 show that the average number of iterations needed to converge was slightly 
more than doubled from the lowest to the middle accuracy. No such relationship can be 

                                                
12 All values are rounded to five decimals 
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deduced between the middle and highest accuracy due to the non-convergence of some 
of the trials with the highest accuracy.  

The difference in computational time between the two methods was negligible. Both 
methods completed the simulations for the lowest accuracies in approximately one 
fourth of a second and the highest in one second (though some runs stopped at the 
maximum number of iterations). The GUM framework algorithm was much faster than 
the two MC methods; the computational time required was only 10 ms.   

M1 computed with QMC 
Required accuracy 10^-6 10^-5 10^-4 

Converged Sometimes Yes Yes 
Value -799.99997 -799.99637 -799.99622 

Standard uncertainty 9.55276 9.55274 9.55363 

Coverage factor 1.959275 1.96228 1.96187 

Skewness -0.13437 -0.123097 -0.11723 

Value error 2.06157E-5 0.00362 0.00378 

Time elapsed while iterating 736.1 (ms) 489.4 (ms) 199.8 (ms) 

Time elapsed while sorting 110.0 (ms) 63.0 (ms) 19.0 (ms) 

Number of iterations 79462 52428 21299 

Table 6 – Results of QMC for M1 

The numerical values for the coverage factor found in Tables 6 and 7 correspond well to 
the coverage factor of a normal distributed variable. However, the numerical value of 
the coverage factor is calculated under the assumption that the PDF of the uncertainty is 
symmetric. Some information about the symmetry of the distribution can be deduced 
from the skewness, the calculated skewness coefficients for these simulations are all 
between 0.10-0.15. An approximate test for symmetry is to compare the skewness to the 
standard error of skewness13 (SES), skewness greater than two times the SES indicates 
asymmetry.  

 

M1 computed with MC 
Required accuracy 10^-6 10^-5 10^-4 

Converged No Sometimes Yes 
Value -799.99724 -799.98250 -800.00905 

standard deviation 9.54547 9.56298 9.57205 

Coverage factor 1.95997 1.95948 1.96333 

Skewness -0.14689 -0.12817 -0.14627 

Value error 0.00276 0.01749 -0.0090 

Time elapsed while iterating 1006.0 (ms) 727.4 (ms) 201.7 (ms) 
Time elapsed while sorting 115.8 (ms) 82.7 (ms) 16.0 (ms) 

Number of iterations 100000 72900 19700 

Table 7 - Results of MC for M1 

 
                                                
13 Skewness coefficients can be considered significant if their absolute values are greater 
or equal to 2 times the standard errors for skewness (Tabachnick & Fidell, 1996). The 

standard error for skewness (SES) can be calculated as SES = (6/n)1/2 
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The greatest SES for these simulations is 0.017 and all the uncertainty PDFs should 
therefore be considered asymmetric. But how does this asymmetry affect the results? 
The Monte Carlo methods allow numerical computation of confidence interval and 
these proved to be fairly symmetric in this particular case.  

7.1.2 Time and uncertainty for M2 
 

Results of the GUM algorithm for M2 
Calculated Value 196.77797 

Standard uncertainty 1.679746 
Time to evaluate uncertainty 50 (ms) 

Table 8 – Results of the GUM algorithm for M2 

 
The results of the MC simulations of M2 are presented in the Tables 9 and 10. The three 
levels of accuracy required were lowered by a digit due to increased dimensionality. Not 
much can be deduced from the numerical value of the parameters; value, standard 
deviation and coverage factor. There is slight difference on the third decimal, as in the 
simulations of M1.  

The iterations consumed by standard MC to simulate M2 were fairly consistent with 
results received while applying the same method to M1. Three times the iterations were 
required to improve the accuracy by one decimal. The results of QMC for M2 presented 
here were gained using a longer sequence than in the result on M1 above. This is simply 
because the longer sequence generated much better results in terms of consistency 
between runs. QMC succeeded to converge some of the 10 trials for the lowest and 
middle accuracy.  

 
The successful trials of the standard MC method still show a large weakness: the 
computational time. About 5, 13 and 42 seconds, respectively were needed to arrive at 
the specified levels of accuracy. The GUM algorithm completed the task in 50 ms 
which is rather significantly lower than 42 s.    

The skewness of the uncertainty PDF is smaller than M1’s equivalent. A quick 
verification of the SES provides varying results. The SES for the simulation with lowest 
accuracy is about 0.028 and the PDF could therefore be considered symmetric. The 
simulations requiring the highest accuracy had a SES about 0.01 implying that the PDF 
is asymmetric. The numerically calculated confidence intervals, as in the simulations of 
M1, were practically symmetric.   
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Results of MC for M2 
Required Accuracy 10^-5 10^-4 10^-3 

Converged Yes Yes Yes 

Value 196.77585 196.77009 196.77553 

Standard deviation 1.67773 1.68042 1.68222 

Coverage factor 1.95951 1.95818 1.95990 

Skewness 0.03224 0.05163 0.03921 

value error -0.00211 -0.00787 -0.00243 

Time elapsed while iterating 42142.3 (ms) 12885.6 (ms) 4859.8 (ms) 

Time elapsed while sorting 140.0 (ms) 20.1 (ms) 5.0 (ms) 

Number of iterations 69300 21900 8000 

Table 9 - Results of MC for M2 

 
Results of QMC for M2 

Required Accuracy 10^-5 10^-4 10^-3 
Converged No rarely Rarely 

Value 196.77409 196.77421 196.77422 

standard deviation 1.66945 1.67440 1.67667 

Coverage factor 1.95966 1.96095 1.96245 

Skewness 0.04029 0.04568 0.04064 

value error -0.00387 -0.00377 -0.00367 

Time elapsed while iterating 58438.3 (ms) 54367.3 (ms) 53952.6 (ms) 

Time elapsed while sorting 144.6 (ms) 126.6 (ms) 120.0 (ms) 

Number of iterations 98304 95027 91750 

Table 10 - Result of QMC for M2 

Table 11 presents simulations of M2 whereas the uncertainties in the inputs were 
considered completely uncorrelated (i.e. the correlation matrix was set to the identity 
matrix with a dimensionality equal to the number of basic inputs). These results are 
provided to show that the number of iterations needed and computational time 
consumed remain approximately the same for uncorrelated input uncertainties. The 
results show nothing remarkable, the skewness present can be explained by several of 
the inputs reoccurring in the model. The approximate equality in computational time 
consumed using correlated and uncorrelated inputs provides reason to believe that the 
random multivariate normal distribution generator used can operate approximately at 
the same speed regardless of the provided correlation matrix structure. This is important 
since profiling14 reveal that over 90 percent of the computational time consumed by 
simulations was spent by the multivariate normal distribution generator. A comparison 
between the simulations with correlated and uncorrelated input does also indicate that 
the method used to correlate the inputs didn’t corrupt the discrepancy of the Niederreiter 
sequences.   

 

 

                                                
14 Conducted with the profiler incorporated in NetBeans IDE 6.1 
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Results of MC & QMC of M1 with Uncorrelated Uncertainties and 
accuracy 10-3 

Method MC QMC 

Converged Yes Sometimes 

Value 196.77072 196.77704 

standard deviation 1.43967 1.44959 

Coverage factor 1.97407 1.95717 

Skewness 0.01989 0.02825 

Value error -2.85995E-4 9.31199E-4 

Time elapsed while iterating 4676.1 (ms) 56014.6 (ms) 

Time elapsed while sorting 7.0 (ms) 130.9 (ms) 

Number of iterations 7400 91750 

Table 11 - Results of MC & QMC of M1 with Uncorrelated Uncertainties and accuracy 10-3 

 

7.1.3 Discussion of the uncertainty results 
All three methods can obviously be used to approximate the value of a process variable 
and the uncertainty in that value. The approximation of the value coincides over the first 
four significant digits.  Four digits should be acceptable in most practical applications 
even though a higher accuracy might be desired. The accuracy in absolute terms is 
difficult to estimate but the values of Table 5 and 8 are exact.  

The accuracy in the standard uncertainty is a bit worse, only two significant digits 
coinciding. Two digits might not look like much but it’s a satisfying result since it 
implies that all three methods successfully evaluated the standard uncertainty. And two 
significant digits are usually enough since the whole procedure of identifying sources of 
uncertainty is of an approximate nature.   

Another interesting result is the number of iterations needed to satisfy the stop 
condition. The results of the standard MC method does deviate from the theoretical 
bounds, the results indicate a much faster convergence rate. The QMC doesn’t improve 
on the convergence rate of standard MC. The exact convergence rate of the QMC 
simulations is clouded by the minimum and maximum limitations, but the performance 
is worse than standard MC for the M2 and better for M1. The difference in performance 
on M1 was small, QMC requires slightly fewer iterations. The difference in 
performance on M2 was much more significant. The standard MC performed better than 
expected whereas QMC rarely succeeded to converge with the maximum number of 
iterations. Whether QMC’s failure for M2 is a result of the problem having high 
effective dimensionality or if there is a mismatch between this specific implementation 
and the problems, cannot be deduced from these trials. QMC would be unsuitable as a 
general method for uncertainty evaluations if the bad performance can be explained by 
the problem having high effective dimension (since M2 is a veritable model were the 
uncertainty is of interest). This study provides no support for QMC as an effective 
general method for propagating uncertainty, regardless of the explanation.   

Closely coupled with the number of iterations needed to achieve certain accuracy is the 
time consumed by the calculation. This time measure isn’t a generalizable result for the 
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methods; it depends on loads of different factors such as the technologies used in the 
implementation and the specific computer used. The MC methods needed 
approximately five seconds to complete 8000 iterations on a large model. This indicates 
that the methods probably would be too slow for online implementations of automatic 
uncertainty evaluation. The time consumed by the GUM algorithm is negligible in 
comparison and seems to be a more suiting option for online implementations of 
automatic uncertainty evaluations.  

The trials above focused mainly on how fast the methods completed the task of 
propagating the uncertainty through a model. There are, as mentioned in the chapter 
named uncertainty, other aspects to regard. A couple of examples, briefly treated in the 
tests, are the coverage factor and symmetry. Other examples are nonlinearity in models, 
scale vs. frequency and the volatility of the system. The GUM algorithm has to treat 
non-linearity by approximations and rely on assumptions for the coverage factor and 
symmetry. The specifications in chapter 2 and 3 aimed to be as general as possible, but 
the system and processes using automatic measurement system have variant 
characteristics. Even the GUM algorithm might be too slow for a very large system 
(scale) requiring a short unit time (frequent). System with varying ways (volatility) to 
evaluate each PV might have greater use for automatic and frequent uncertainty 
evaluation.     

An alternative or complement to automatic uncertainty evaluation with the GUM 
algorithm would be an offline tool that does the evaluation on demand. The time 
consumed by the MC methods to achieve sufficient accuracy does allow for usage of 
such tools. An offline MC tools could also be used to validate the calculations and 
assumptions made in online evaluation with the GUM method. Such a tool could be 
used to verify sufficiently often that the standard uncertainty has been correctly 
evaluated. But it could also be used to calculate a coverage factor and the symmetry of 
the PDF. For example, if a coverage factor is calculated every twentieth unit time 
average and remains close to constant over time, then that coverage factor could be 
assumed valid for unit time averages within the interval where the coverage factor 
remained almost constant.      

7.2 Result of weighting  
M3 was used in order to verify and get some practical sense of consistency checking 
and accuracy gain by combining measurement results. The model was chosen because it 
is an actual case of where there are two ways of evaluation a PV and yet simple enough 
for the results to be interpretable.   

A normal distributed uncertainty was added to each measured result, just as in the 
evaluation of uncertainty methods above. The standard deviations of these uncertainties 
were defined relatively to the magnitude of the corresponding measured result. Test 
were performed at three levels of the uncertainties standard deviations; 1, 1.5 and 2 
percent of corresponding measured result (in this chapter the standard deviation of the 
uncertainties will be specified in percentages, which is to be read as percentages of the 
corresponding measured result), to illustrate the common effect of implementing both 
consistency checking and weighted averaging.  All three levels of the standard deviation 
were run for the uncertainties set to be uncorrelated, but also correlated according to the 
correlation matrix in fig 7 from the evaluation of uncertainty methods. 

The results are presented in the Tables 12 and 13, compartmentalized on whether the 
uncertainties were considered correlated or not. The numbers shown are mean values of 
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24 different sets of measured values; each set represents the average over one hour, so 
together the mean values presented represents the average for a day of production 
(rounded to two decimals precision). The column mode indicates how the value was 
evaluated; v1 means that the value was taken from v1 in M3, v2 as with v1, average that 
the value is the arithmetic average of the inputs and optimal is the optimal weighting 
described in chapter 6. Nr of consistent is the column that denotes how many of the 
hourly averages passed the consistency test. For each hour where the consistency test 
failed, the average or optimal value was replaced with the most accurate value of V1 or 
V2.   

Perhaps the most obvious result of the tests is that uncertainties with a standard 
deviation of one percent did not result in any consistent measurements whereas almost 
all measurements when the standard deviation was set to two percent of the 
measurements value passed the consistency check. This result is, unfortunately, only 
valid in this particular case and doesn’t allow for any general conclusions to be drawn. 

It can be deduced from Table 12 that uncorrelated input uncertainties with a standard 
deviation of 1.5 percent gave a total uncertainty of 1.27 percent of the value using the 
average method and 1.38 percent using the optimal method. In comparison with the best 
of the two basic values, v2 with a standard uncertainty of 1.5 percent, these methods 
improved standard deviation of the uncertainties by 23 respectively 12 percent. For 
input uncertainties with a standard uncertainty of 2 percent; the average method resulted 
in a standard uncertainty of 1.48 percent and the optimal method 1.51 percent.  So even 
in this case where the optimal method actually produced optimal weights due to the 
non-existing correlation, the method didn’t succeed to produce an optimal result. Even a 
simple arithmetic average provided better results, simply because more of the 24 hour 
averages could be considered consistent.  

All the weights generated by the optimal method were 0.56±0.02 for v1and 0.44±0.02 
for v2, i.e. no weight deviated more than 0.08 from the 0.5-weighting used by the 
average method. Hence the difference in the result gained from the two methods for an 
hour where the measured values were found consistent, would be small.   

 

Weighting results for uncorrelated uncertainties 

Uncertainty level Mode 
Nr of 

consistent 
Value Standard uncertainty 

1 procent Actual 0 152.80 1.66 
 Pred 0 146.40 1.46 
 Average 0 146.40 1.46 
 Optimal 0 146.40 1.46 

1,5 procent Actual 0 152.80 2.49 
 Pred 0 146.40 2.12 
 Average 14 148.12 1.88 
 Optimal 7 147.08 2.03 

2 procent Actual 0 152.80 3.31 
 Pred 0 146.40 2.92 
 Average 24 149.60 2.21 
 Optimal 22 148.91 2.25 

Table 12 -Weighting results for uncorrelated uncertainties 

 
The results changed slightly when correlations were introduced into the tests. The 
correlation matrix used in the uncertainty test was recycled and used to define the 
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structure and magnitude of the correlations. A comparison between the uncertainties in 
Tables 12 and 13 show that the total uncertainty of v1 increased due to these 
correlations whilst that of v2 remained unchanged. It can also be read from Table 13 
that using the arithmetic average still outperforms the optimal weights which now only 
showed seven consistent hour averages. But also the effectiveness of the arithmetic 
average method was severely penalized by the correlations, the improvement in 
standard uncertainty was only 0.08 percent in comparison with the best simple value v2, 
this with a standard deviation of the basic uncertainties at 2 percent.   

     
Weighting results for correlated uncertainties 

Uncertainty level Mode Nr of 
consistent 

Value Standard uncertainty 

1 procent Actual 0 152.80 1.94 
 Pred 0 146.40 1.46 
 Average 0 146.40 1.46 
 Optimal 0 146.40 1.46 

1,5 procent Actual 0 152.80 2.90 
 Pred 0 146.40 2.20 
 Average 7 147.17 2.18 
 Optimal 0 146.40 2.20 

2 procent Actual 0 152.80 3.87 
 Pred 0 146.40 2.93 
 Average 22 149.27 2.85 
 Optimal 7 146.97 2.87 

Table 13 - Weighting results for correlated uncertainties 

  

7.2.1 Discussion of weighting  
The absolute results presented in Tables 12 and 13 cannot be generalized, but they show 
that the methods can be used successfully. The gain in accuracy was quite small in 
several cases but better for the largest uncertainties. These larger uncertainties could be 
argued to constitute a more realistic case since a large proportion of those hourly 
averages could be considered consistent. Successful simultaneous measurements of the 
same physical quantity should be consistent, so cases with few consistent hourly 
averages should be considered less realistic or  as realizations where one measurement 
failed.  

The better results of average method than of the optimal-method can also be explained 
by the by trueness of the case,  the optimal method would, of course, produce better 
results for uncorrelated uncertainties where all measurements could be considered 
consistent. So the optimal method would produce the best results in a fine tuned reliable 
system even if the results above display the opposite.  

The lessons learned from the experiment is that combining consistent measurements is 
indeed useful for the calculation of trustworthy values of process variables and that the 
choice of method for producing the weights might depend slightly on the particular 
system. The optimal method should be preferred for most sufficiently fine tuned reliable 
systems, but as the quality declines and not all measurements can be considered 
consistent for the optimal method, then the usage of the average method might produce 
better results.  
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8 Concluding discussion  
The purpose of constructing a system that operates on averages is to lower the amount 
of data that needs to be stored and processed. The implicit aim was to specify methods 
that allowed averaging over large time periods and didn’t require extensive knowledge 
or dubious assumptions. Two attributes were introduced to tackle these issues; 
confidence and active time. The active time allows shorter time periods to be considered 
in the calculations, but still requires an assumption of where the active periods are 
placed within the time unit. The assumed rule induces calculations that result in a total 
value equal to the result gained if all averages were expanded to be valid for the entire 
time unit. Explicitly stating the active time in a separate attribute is still worthwhile 
since the source for active time doesn’t have to be the same as for the average value. 
The confidence, describing error due to the averaging, assumes that there’s no 
covariance between PVs (of the variance within a unit time average). The quality 
description would be incorrect if PVs with covariance within the unit time are combined 
by nonlinear operations. The exact gain of incorporating active time is difficult to assess 
but the incorporation confidence substantially lowers the assumptions required. 
Lowering the requirements from a resolution that eliminates systematic variation within 
the unit time averages to a resolution where no nonlinear operations are performed on 
unit time averages that exhibits common systematic variation. This allows the system to 
use a greater unit time than otherwise while still retaining an accurate data description.  
 

Three different methods to propagate uncertainty were evaluated; an algorithm based on 
the GUM framework, a standard Monte Carlo method and a Quasi-Monte Carlo 
method. The family of Monte Carlo methods is known to be slow for multidimensional 
problems. Tests were performed to verify if they could be fast enough for automatic 
uncertainty evaluation. Test of the time consumed to solve various problems with 
Monte Carlo simulations has been conducted before. But the computational speed of 
standard computers increases all the time and uncertainty, being an approximate 
concept, doesn’t require high accuracy in the simulations. This provided reason to 
believe that the method might be fast enough for this particular application. The five 
seconds required by standard Monte Carlo to provide an accuracy 10-3 for M2, 
confirmed that the methods still would be too slow for automatic uncertainty evaluation 
of most systems. For example, if the unit time was set to one hour and the system 
contained a thousand PVs with about the same complexity as M2, then the total time 
required for the simulations would have been 5000 seconds15. This must be considered 
too slow since one hour still corresponds to 3600 seconds. The quasi-Monte Carlo failed 
to shorten the time consumed by the simulation. A successfully test wouldn’t have 
implied that QMC is suitable as a general method (since the convergence rate is closely 
coupled with the effective dimension of the problem). But if at least one real high 
dimensional measurement uncertainty problem proved to gain substantially from the use 
of QMC, then it would have been of interest to produce methods of assessing the 
problems effective dimension and thereafter identify the MC method to use. The overall 
conclusion from the test is that automatic uncertainty evaluation must be conducted with 
the GUM-algorithm. A Monte Carlo method, implemented as an offline tool, constitute 
a good compliment to verify the results produced by the GUM-algorithm and calculate 

                                                
15 A unit time of one hour and a thousand PVs isn’t an unreasonable case, A large  process industry 
contains lots of PVs and some, for example refineries, have stable production that changes slowly. 
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coverage factors. Another alternative for PVs, whose value sources remain basically 
unchanged, is to use an MC method and evaluate the uncertainty for every Nth unit time 
average.   

Another argument for the use a GUM algorithm is that it would be much simpler, as 
compared to MC methods, to combine with consistency checking. Only consistent 
values of a PV should be combined and thereby produce more accurate values. The 
description in section 5.2 showed that optimization of the weights used to combine the 
different sources is a difficult problem. Two different alternatives were proposed to 
avoid solving the optimization problem: the arithmetic average and optimal weights 
under assumed independence. The results of the tests in section 7.2 showed that both 
methods where about equal in performance. The slight difference, as can be predicted 
from their mathematical description, was that the arithmetic average produced more 
accurate results for doubtful descriptions of the uncertainty and the optimal method was 
a bit better when both methods produced a consistent combination. Both methods 
should produce consistent combinations in a finely tuned system, where the uncertainty 
of the values is correctly described. The arithmetic average is probably the best overall 
choice since it aids doubtful uncertainty descriptions better and the doubtful 
descriptions can be assumed to be in greatest need of improvement. Using the arithmetic 
average would demand a small test on whether the average does improve on the inputs. 
Any of the inputs might constitute a less uncertain value than the arithmetic average.  

The methods proposed in this thesis provide a good foundation for a system operating 
on averages of PVs. They provide an adequate description of the data, need only a few 
assumptions and an implementation would be straightforward. The methodological 
issues of this work, as described in the introduction, restrict the claim of the hereby 
proposed specifications to being a good foundation. There might be a more suitable set 
of data quality dimensions, a more clever time specification, an algorithm to find the 
optimal weights etc.  These subjects should all be up for debate and this work can, at 
least, serve as both a contribution and foundation for such a debate.   
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Appendix A  
The unbiased sample standard deviation is defined as: 
 

( )
( )

2
1

1
1

2



















−

−
=
∑

=

n

Xx
X

n

i
i

σ         (A.1) 

 
where n is the sample size, ix the individual samples and X the sample average. 
The concept of confidence as explained by Klein uses the large-sample confidence 
intervals described by Haas (Klein, 2007; Haas, 1997). These large-sample confidence 
intervals can be erroneous and whole concept of confidence should therefore be 
regarded as approximate (Haas, 1997). The construction of these intervals relies on the 
assumption that the observations used can be regarded as a random sample large enough 
for the central limit theorem to apply (Haas, 1997).  
The confidence of an average aggregate of a variable X is, under these assumptions, 
defined as: 
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where d is the coverage factor that expands the confidence level of the interval to 95 
percent. The logic of this definition should be clear; the confidence interval for an 
observation of the population is ( )Xdxi σ±  and the errors are combined by Gaussian 

error propagation to form the interval of the average. The Gaussian error propagation 
assumes independence between errors and is normal in scientific applications 
(Klein,2007; Lindskog, 2006). The Gaussian error propagation is based on a first order 
Taylor approximation of the variance of a real function of independent variables. The 
approximation: 
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is exact for linear functions (Råde & Westergren, 1998). The assumed independence 
should be regarded as a compromise; some variables might have a positive covariance 
that would increase the total variance and others a negative covariance lowering the 
total variance (Lindskog, 2006).   
The situation changes slightly if the samples Xi were subjected to some downsampling 
technique before the averaging. Each Xi would contribute their confidence and those 
confidences should, again assuming independence, be combined by Gaussian error 
propagation: 
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 But the averaging would also introduce another error on the form of (A.2). Klein 
imposes that this new error and those of the individual components Xi should be 
considered dependent and therefore combined by linear addition (as for fully positively 
dependent variables): 
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where each( )iXε  corresponds to the confidence of the individual input Xi and Y 

represents the average aggregate (Klein, 2007). This corresponds to the formula (3.2).  
 
The confidence of a result gained by performing linear operations on unit time averages, 
such as addition or subtraction, is calculated according to (A.3). This should be self-
evident since the operations don’t introduce any new error apart from the initial 
sampling process. The situation is slightly different for the operations denoted 
nonlinear. For example, a new error is introduced by calculating a the average of a PV 
Y that is defined as a multiplication of two other PVs X1, X2 as 21XXY = . This will be 

handled by consider ( )11 XdX σ±  to be a 95 percent confidence interval for each value 

used to form 1X . This would imply, using Gaussian error propagation that: 
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constitutes a 95 percent confidence interval for each individual observation of 21XX . 
Averaging of nsuch observation would therefore have to consider two sources of errors 
in the average: those of the individual observation according to (A.5) and those of the 
averaging itself according to (A.2). These two sources must, of course, be considered 
dependent and the errors combined by linear addition. The resulting formula for 
multiplication is: 
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where each first partial derivate has been substituted with the calculated average (this 
would, strictly formally, introduce another small error). The derivation of formulas for 
other nonlinear operations can be conducted similarly.   
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Appendix B 
This appendix provides a numerical example of the basic operations multiplication and 
addition. The example in Table 1 of section 2.3 will be reused to provide the numerical 
PVs. Those numbers are reproduced in Table 14 below. 
 

Sample nr X1 X2 X1+X2 X1*X 2 
1 2 6 8 12 
2 5 4 9 20 
3 2 4 6 8 
4 1 7 8 7 
5 7 9 16 63 
6 3 2 5 6 
7 6 3 9 18 
8 1 7 8 7 
9 4 4 8 16 
10 7 2 9 14 

Average 3.8 4.8 8.6 17.1 

Table 14 - The example 

Some more information is needed to construct unit time averages for X1 and X2. The 
time description, the completeness and standard deviation are parameters that are 
normally provided by the measurement system. The measurement uncertainty is usually 
provided by some other external source. But this is a fictional example without real data 
sources and these values have to be assigned manually. The standard deviation can be 
calculated from the values of the individual samples. Calculating the unbiased standard 
deviation estimator of formula (3.22) results in: 
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for X1 and 
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for X2. The other parameters have to be stipulated. Let these be chosen according to: 

• Completeness = 100 percent 
• Timestamp = 2008-09-18 12:00 
• Duration = 1 
• Active time = 1 
• Standard uncertainty = 1 percent of the PV’s value 
• The uncertainties of the inputs are mutually independent 

for both PVs. The confidence is calculated according to equation (3.1) and taking the 
coverage factor as 2 yields: 
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for both i=1 and i=2. Choosing the coverage factor as 2 is a slight simplification. An 
exact coverage factor for a large sample confidence interval with nine degrees of 
freedom is slightly larger. The resulting complete unit time averages are shown in Table 
15 and 16.  
 

PV X1 
Value 3.8 
Timestamp 2008-09-18 12:00 
Active Time 1 
Duration 1 
Standard Deviation 2.347586 
Standard Uncertainty 0.038 
Confidence 1.484737 
Completeness 100 

Table 15 - X1 

PV X2 
Value 4.8 
Timestamp 2008-09-18 12:00 
Active Time 1 
Duration 1 
Standard Deviation 2.347586 
Standard Uncertainty 0.048 
Confidence 1.484737 
Completeness 100 

Table 16 - X2 

Let’s first consider the case when these two PV are combined by addition. The 
specifications for this operation were given in section 3.2.1. The value of the result is 
specified in equation (3.5):  
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where Y is the result of the addition. The timestamp of Y will be that of X1, the duration 
specified in formula (3.6) will be 1 and equation (3.7) yields an active time of 1. The 
completeness will remain at 100 percent since it’s calculated as the average of the 
completeness of all input PVs. The standard deviation of Y is specified in equation 
(3.8): 
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and the confidence specified in equation (3.9) is calculated according to (B.6). 
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The uncertainty in this example will be propagated according to the GUM framework. 
The reason for this choice is that it would be impossible to illustrate a Monte Carlo 
simulation. Addition of two variables is propagated according to (4.1): 
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where ( ) 0, =ji xxr due to the mutual independence of the input uncertainties,  

( )
( ) ( )( ) 1
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So the numerical value of the standard uncertainty is:  
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Table 17 contains a summary of numerical unit time average. The confidence is quite 
large but this is an expected result if both inputs have such large standard deviations. 
  

PV X1+X2 
Value 8.6 
Timestamp 2008-09-18 12:00 
Active Time 1 
Duration 1 
Standard Deviation 3.319973 
Standard Uncertainty 0.061221 
Confidence 2.099735 
Completeness 100 

Table 17 - Addition of X1 and X2 

An example of a nonlinear operation is the multiplication specified in section 3.2.3. The 
unit time averages specified in Table 15 and 16 will be reused for this illustration. The 
time specification of the result becomes as that of the addition. The value: 
 

24.188.48.321 =⋅== XXY         (B.9) 
 
which is 1.14 larger than the result presented in Table 14. The standard deviation 
calculated according to equation (3.13) is calculated in formula (B.10). 
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The confidence shown in formulae (B.11) is calculated according to equation (3.14). 
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The uncertainty propagated with the GUM framework is calculated according to 
equation (4.1): 
 

( ) ( )( ) ( ) ( ) ( )212121

2

1

22 ,2 XXrXuXuccXucYu
k

kk +=∑
=

                (B.12) 

 
where ( ) 0, =ji xxr , 8.421 == Xc  and 8.311 == Xc . Insertion of the numerical values 

yields the result shown in formulae (B.13).  
 

( ) ( ) ( ) ( )
257953.0

048.08.3038.08.48.38.4)( 22222
2

22
1

2

=
+=+= XuXuYu

            (B.13) 

 
The result of the multiplication is summarized in Table 18.  
 

PV X1*X2 
Value 18.24 
Timestamp 2008-09-18 12:00 
Active Time 1 
Duration 1 
Standard Deviation 14.37207 
Standard Uncertainty 0.257953 
Confidence 18.17939 
Completeness 100 

Table 18 - Multiplication of X1 and X2 
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Appendix C 
The Monte Carlo implementation used in the tests. The class has been stripped of all 
irrelevant content such as get/set- methods. The code presented below is the code used 
in the actual simulations.  
  
package  performance; 
import  ProcessEntity.Ucomp; 
import  ProcessEntity.Variable; 
import  ProcessEntity.Meter; 
import  cern.colt.matrix.impl.DenseDoubleMatrix2D; 
import  cern.colt.matrix.linalg.EigenvalueDecomposition; 
import  umontreal.iro.lecuyer.randvar.NormalGen; 
import  umontreal.iro.lecuyer.randvarmulti.MultinormalChol eskyGen; 
import  umontreal.iro.lecuyer.probdist.NormalDist; 
import  umontreal.iro.lecuyer.hups.NiedSequenceBase2; 
import  umontreal.iro.lecuyer.hups.PointSetIterator; 
import  java.util. Vector ; 
import  java.util. Collections ; 
import  cern.colt.matrix.linalg.Algebra; 
/** 
 * Class that takes a variable as an argument, inde xes all the 
phyMeters found in 
 * the tree of the variable. 
 * For a moment the class creates a fake covariance  Matrix.  
 * @author Niklas Molin 
 */ 
public  class  MonteCarlo 
{ 
 private  Vector  v; //Vektor where each PhyMeter-object will be 
indexed 
 private  final  int  it = 10000; 
 private  double  relAccuracy = 0.00001; 
 private  final  int  maxit = 100001; // Cannot be much higher for 
MCp & qMCp metohds or heap space overflow 
 private  double [] mu; //Vektor med väntevärde för 
feldistributionerna till mätarna 
 private  DenseDoubleMatrix2D sigma; //Covariance-Matrix 
 double [] point; //where each point value will be saved 
 double  res = 0; //approximation of the variance  
 double  res1 = 0; //approximation of y 
 double  old = 1; 
 double  old1 = 1; 
 int  nr = 1; 
 RandomGen RndStream; 
 NormalDist ND; 
 NormalGen NDG; 
 MultinormalCholeskyGen MNDG; 
 private  Variable m; 
 //RESULT DATA-------------------------------------- ------------- 
 private  double  y, ymin, ymax, skewness; 
 private  double  itTime, sortTime; 
 private  double  error, std; 
 private  String  method = "" ; 
 private  int  nrOfIt = 0; 
 //------------------------------------------------- ------------- 
 public  MonteCarlo(Variable m) 
 { 
  this .m = m; 
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  y = m.getValue(); 
v = new Vector (); //Vektor where each PhyMeter-object will 
be indexed 

  getList(m); //Indexed all the Phymeters in the vector 
  // System.out.print("Antalet mätare med osäkerhet: " +
   v.size()); 

Meter m1; // Variable used to save references to meters 
tepomorary 

  sigma = new DenseDoubleMatrix2D(v.size(), v.size()); 
  //sigma = new double[v.size()][v.size()]; 
  mu = new double [v.size()]; 

point = new double [mu.length]; //where each point value 
will be saved 
//The loop is supposed to load the covariance and v ariance 
of the meters  

  //into the covariance-Matrix 
 

// for (int i = 0; i< 
v.size();i++)System.out.println(((Ucomp)((Meter) 
v.elementAt(i)).getU().elementAt(0)).getId()); 

  for  ( int  i = 0; i < v.size(); i++) 
  { 
   m1 = (Meter)v.elementAt(i); 
   mu[i] = 0; 
 
   for  ( int  j = 0; j < v.size(); j++) 
   { 
    if  (j == i) 
    { 
     try 
     { 

sigma.setQuick(i, j, 
Math .pow(((Ucomp)m1.getU().elementAt(0))
.getValue(), 2)); 

 
     } 
     catch  ( Exception  ex) 
     { 

System .out.println(i + "   "  + 
m1.getClass() + "  "  + 
m1.getName()); 

     } 
 
    } 
    else  if  (j - 1 == i) 
    { 
 

sigma.setQuick(i, j, 0.5 * 
((Ucomp)m1.getU().elementAt(0)).getValue
() * 
((Ucomp)((Meter)v.elementAt(j)).getU().e
lementAt(0)).getValue()); 

    } 
    else  if  (j + 1 == i) 
    { 
 

sigma.setQuick(i, j, 0.5 * 
((Ucomp)m1.getU().elementAt(0)).getValue
() * 
((Ucomp)((Meter)v.elementAt(j)).getU().e
lementAt(0)).getValue()); 
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    } 
 
    else 
    { 
     sigma.setQuick(i, j, 0); 
 
    } 
   } 
   Algebra A = new Algebra(); 
  } 
 
 } 
 public  MonteCarlo(Variable m, double  acc) 
 { 
  this (m); 
  relAccuracy = acc; 
 
 } 
 public  void  MCp() 
 { 
  method = "MCp" ; 

//Creation of the object that will generate the poi nts for 
each step 

  RndStream = new RandomGen(); 
  ND = new NormalDist(); 
  NDG = new NormalGen(RndStream, ND); 
  MNDG = new MultinormalCholeskyGen(NDG, mu, sigma); 
  //------------------------------------------------- ------- 
  //The stop critereas and results------------------- ------- 
  double  sy = 0; 
  double  su = 0; 
  double  ylow = 0; 
  double  yhigh = 0; 

//------------------------------------------------- -------
point = new double [mu.length]; //where each point value 
will be saved 

  res = 0; //uppskattnigen av variansen 
  res1 = 0; //uppskattningen av y 
  old = 1; 
  old1 = 1; 
  stdOld = 0; 
  nr = 1; 
  Meter m1; 
  Vector  all = new Vector (); 
  double  thirdMoment = 0; 
  double  start = System .currentTimeMillis(); 

while  (( Math .abs((res1 / (it * (nr - 1)) - m.getValue()) / 
m.getValue()) > relAccuracy || Math .abs((std - stdOld) / 
std) > relAccuracy || nr < 2) && nr * it < maxit * 100) 

  { 
 
   old = res; 
   old1 = res1; 
   stdOld = std; 
   for  ( int  k = 0; k < it; k++) 
   { 
    MNDG.nextPoint(point); 
    for  ( int  i = 0; i < v.size(); i++) 
    { 
     m1 = (Meter)v.elementAt(i); 
     m1.setMCvalue(point[i]); 
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    } 
    double  b1 = m.evalMC(); 
    double  b2 = m.getValue(); 
    res += Math .pow(b1 - b2, 2); 
    res1 += b1; 
    all.add(b1); 
    thirdMoment += Math .pow(b1 - b2, 3); 
   } 
   nr++; 
   std = ( Math .sqrt(res / (it * (nr - 1)))); 
 
  } 
  double  q; 
  itTime = System .currentTimeMillis() - start; 
 
  error = m.getValue() - res1 / (it * (nr - 1)); 
  if  (isInt(0.95 * it * (nr - 1))) 
  { 
   q = ( int )0.95 * it * (nr - 1); 
  } 
  else 
  { 
   q = ( int )0.95 * it * (nr - 1) + 1 / 2; 
  } 
  start = System .currentTimeMillis(); 
  Collections .sort(all); 
  sortTime = System .currentTimeMillis() - start; 
  double  n = (it * (nr - 1)); 
  nrOfIt = it * (nr - 1); 

ymin = (( Double )all.elementAt(( int )(it * (nr - 1)) / 
40)).doubleValue(); 
ymax = (( Double )all.elementAt(all.size() - (( int )it * (nr 
- 1) / 40))).doubleValue(); 
skewness = ( Math .sqrt(n * (n - 1)) / (n - 2)) * 
(thirdMoment / n) / ( Math .pow((1 / n) * res, 3 / 2)); 

 
 } 
 
 public  void  qMCp() 
 { 
 

/************************************************** *************
*** 

      * int log2nrPoints -Decides the nr of point t o be generated  
* the number of point will be 2^log2nrPoints where 0 <= 
log2nrPoints <= 30 

      * int w - w is the number of output digits an d w<=log2nrPoints 
* int dim - is the dimension of the sequence and is  
restricted to 318 

       */ 
  method = "qMCp" ; 
  Vector  all = new Vector (); 

Meter m1; // Variable used to save references to meters 
tepomorary 

  //RndStream1.increasedPrecision(true); 
  int  log2nrPoints = 13; 
  int  w = 31; 
  int  nrOfPoints = ( int ) Math .pow(2, log2nrPoints); 
  int  dim = mu.length; //we want points for all inputs  
  //System.out.println("FELET : "+dim); 
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NiedSequenceBase2 nxsb2 = new 
NiedSequenceBase2(log2nrPoints, w, dim); 

  RndStream = new RandomGen(); 
  //RndStream1.resetNextSubstream(); 
  //nxsb2.addRandomShift(); 
  //RandShiftedPoint 

nxsb2.addRandomShift(0, dim, RndStream);  
  nxsb2.rightMatrixScramble(RndStream); 
  PointSetIterator a = nxsb2.iterator(); 
  NormalGen[] NDGa = new NormalGen[mu.length]; 

//Creation of the object that will generate the poi nts for 
each step 

 
  ND = new NormalDist(); 
  NDG = new NormalGen(a, ND); 
  try 
  { 
   MNDG = new MultinormalCholeskyGen(NDG, mu, sigma); 
  } 
  catch  ( Exception  ex) 
  { 
   System .out.println(ex); 
  } 

//------------------------------------------------- -------
----------- 
// for(int q = 0; q < mu.length ;q++)NDGa[q] = new 
NormalGen( a, new NormalDist(mu[q], sigma[q][q])); 

 
//MNDG = new MultinormalCholeskyGen(NDG,mu,sigma);/ /DET ÄR 
VAR TIDEN FÖRSVINNER 

  double  thirdMoment = 0; 
  double  stdOld = 0; 
  res = 0; 
  res1 = 0; 
  old = 1; 
  old1 = 1; 
  nr = 1; 
  double  start = System .currentTimeMillis(); 

while  (( Math .abs(((old1 - m.getValue() * ((nr - 1) * 
nrOfPoints)) / ((nr - 1) * nrOfPoints * m.getValue( )))) > 
relAccuracy || Math .abs((std - stdOld) / std) > 
relAccuracy) && nr * nrOfPoints < maxit) 

  { 
   nxsb2.addRandomShift(0, dim, RndStream); 
   nxsb2.leftMatrixScramble(RndStream); 
   a.resetStartStream(); 
   old = res; 
   stdOld = std; 
 
   for  ( int  k = 0; k < nrOfPoints; k++) 
   { 
 
    MNDG.nextPoint(point); 
    for  ( int  i = 0; i < v.size(); i++) 
    { 
     m1 = (Meter)v.elementAt(i); 
     m1.setMCvalue(point[i]); 
 
 
    } 
    double  b1 = m.evalMC(); 
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    double  b2 = m.getValue(); 
    all.add(b1); 
    res += Math .pow(b1 - b2, 2); 
    res1 += b1; 
    thirdMoment += Math .pow(b1 - b2, 3); 
 
    a.resetToNextPoint(); 
   } 
   if  (nr > 1) 
   { 
    old1 += res1; 
   } 
   else  { old1 = res1; } 
   nr++; 
   std = ( Math .sqrt(res / (nrOfPoints * (nr - 1)))); 
  } 
  int  q; 
  itTime = System .currentTimeMillis() - start; 
  std = ( Math .sqrt(res / (nrOfPoints * (nr - 1)))); 
  error = m.getValue() - res1 / ((nrOfPoints * (nr - 1))); 
  if  (isInt(0.95 * nrOfPoints * (nr - 1))) 
  { 
   q = ( int )0.95 * nrOfPoints * (nr - 1); 
  } 
  else 
  { 
   q = ( int )0.95 * nrOfPoints * (nr - 1) + 1 / 2; 
  } 
  start = System .currentTimeMillis(); 
  Collections .sort(all); 
  sortTime = System .currentTimeMillis() - start; 
  double  n = (nrOfPoints * (nr - 1)); 

ymin = (( Double )all.elementAt(( int )(nrOfPoints * (nr - 1)) 
/ 40)).doubleValue(); 
ymax = (( Double )all.elementAt(all.size() - 
(( int )nrOfPoints * (nr - 1) / 40))).doubleValue(); 
skewness = ( Math .sqrt(n * (n - 1)) / (n - 2)) * 
(thirdMoment / n) / ( Math .pow((1 / n) * res, 3 / 2)); 

  nrOfIt = (nrOfPoints * (nr - 1)); 
 
 } 
 private  boolean  isInt( double  d) 
 { 
  return  true ; 
 } 
 private  void  getList(Variable m) 
 { 
  if  (m.getId() > 0 && !v.contains(m)) 
  { 
   // if (v.size()==0){ 
   v.add(m); 
   return ; 
  } 
  else 
  { 
   for  ( int  i = 0; i < m.getElements().size(); i++) 
   { 
   
 getList(((Variable)m.getElements().elementAt(i)));  
   } 
  } 
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 } 
} 

 


