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Abstract

To calculate with averages

Niklas Molin

This thesis specifies the foundation for a computer system that operates on averages
of measured values provided by automatic measurements systems. This consists of
specifying a data object for the average of measured values and fusion methods for
that object. The data object should, apart from the value, contain a time and quality
description for the average. The fusion methods considered are elementary arithmetic
operations to combine different objects and aggregates to yield summarized
information on homogenous objects.

The quality of the data objects are described by three attributes; uncertainty,
confidence and completeness. The study provides propagation methods for all quality
attributes but focuses on the uncertainty of the value. Three different methods for
uncertainty propagation are tested. The first method is based on the framework of
the corresponding ISO-standard. The others are standard Monte Carlo and
quasi-Monte Carlo simulations.

The findings can be used directly as material for an implementation of a system that
operates on averages or as material for further discussion. Some of the issues
concerning such a system remain unresolved, while others might be optimized.
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Popularvetenskaplig beskrivning

Dagens industri anvander ofta avancerade autoraatisitsystem och detta géller i
synnerhet for processindustrier. Dessa matsystétfasipfta till styrning och kontroll av
processer men kan aven utgora en datakalla formeatevrandning av méatresultaten.
Detta arbete specificerar grunderna for ett datasysom genomfor berakningar pa
medelvarden av méatresultat. Med grunderna avsesegttlvardesobjekt samt
berakningar med denna typ av objekt. Medelvardesod innehaller forutom sjalva
medelvardet, en tids- och en kvalitetsbeskrivnmgardet.

Ett av anvandningsomradena for ett sddant datas\&@tett berédkna processegenskaper
som &r svara att mata. Ett aktuellt exempel sorsemteras i denna rapport ar
berakningen av det totala koldioxidutslappet frAmpeocessindustri. Koldioxidutslappet
ar intressant eftersom processindustrier ar alagdadovisa storleken pé sina utslapp
samt kOpa utslappsratter som motsvarar utslappeatFberakna koldioxidutslappet i det
presenterade exemplet anvands 6ver hundra uppmatt@rden och sjalvklart eftersoks
ett sa korrekt varde som mojligt. Ett annat anvamgsomrade ar kvalitetsékring av data.
Modeller av samband mellan kvantiteter kan anvafitaatt kontrollera de uppmatta
vardenas rimlighet och eventuellt &ven korrigetakiiggheter.

Medelvardesbildning anvands eftersom manga matnig@omfors valdigt ofta och
darigenom genererar stora mangder data. Tyvarbarmmeedelvardesbildningen en
informationsforlust som forsvarar specifikationsetdt. Exempelvis resulterar en
multiplikation av tva uppmaétta storheters medelearthte i samma varde som
medelvardet av en produkt av de individuella mdaina pa samma storheter.

En stor del av arbetet 4gnas at att definera epligrkvalitetsbeskrivning av data.
Kvalitetsbeskrivningen beskriver mgjliga skillnadeellan det registrerade medelvardet
och det sanna medelvardet av den storhet som n#&debkobjektet representerar. Tre
aspekter av datakvaliteten behandlas: osakerhetexi¢lvardena orsakade av
precisionsbrist i matningarna, fel som inforts aed@lvardesbildningen och
berékningarna, samt hur stor del av de underliggamétningarna som anses lyckade.
Nar olika berakningar genomfors pa medelvardenaerdasipliga metoder anvandas for
att generera en adekvat kvalitetsbeskrivning avlt&®t. Dessa metoder behandlas mest
utforligt for den osakerhet i vardet som orsakatpr@cisionsbrist i matningarna. Tre
olika metoder for denna osékerhet presenteras eds ddmplighet for denna specifika
tillampning utvarderades med en mindre testappbkaDen slutgiltiga specifikationen
innefattar:

» Ett dataobjekt som innehaller medelvardet for emabel tidsperiod, en
beskrivning av tidsperioden och en kvalitetsbesknyg.

» Definitioner av hur dessa dataobjekt kan kombinerdgt de fyra raknesatten,
samt regler for att definiera ytterligare mateniaisperationer.

» Beskrivningar av ett antal val valda aggregerirfgadataobjekten.

» En beskrivning av hur medelvardsobjekt for sammahst som harror fran olika
kallor kan kombineras for att 6ka noggrannheten.
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1 Introduction

Industrial processes often routinely collect laaggounts of data. This is done by
computers collecting measurements on numerous gsoeiables such as flows,
pressures and temperatures. In addition to theepsoeariables, several quality and
productivity variables are usually measured. (Mag®r, 1997)

These measurement systems most often store thamthfarovide an interface for
communicating data concerning the measured questifithe process. This data
provided by modern measurements systems isn’igestrto raw data valu&ssuch
systems often provide fused values such as aversgdime, standard deviation and
the value accumulated over a time period.

Some of the measured variables are thereafterinsedivities like reporting, for
example, production or greenhouse gas emissiomteepBut the entities used in
reporting don’t always correspond to values obthimg measurements. Not all
characteristics of a process can be measured. 8aeo complicated, others too
expensive. Those entities can often be calculaited & combination of measured
values.

The basic idea behind this thesis is that a greag¢ase in information value can be
gained by constructing a computer system that coesbknowledge about the process
and the data from the measurement system. Thisdvadlalw for non-measured process
variables to be determined in terms of their refaito measured variables and thereby
continuously assigned values. Multiple ways of eatihg a process variable could be
defined, thus improving on the accuracy in the @aland lowering the amount of
missing data points for process variables. Knovetianships such as mass and energy
balances can be used to verify and correct valnéshereby to increase the reliability
of the data.

Such a computer system could provide an organizatith the information it needs
about its production processes. All desired catmracould be performed within the
system and thereby eliminate the need for furtlest processing of the values. An
instant application is that it would eliminate theed for the large spreadsheet
calculations that’s often used to produce the $ipesntities used in reports and
planning activities.

The creation of such a system would require sewhifelrent building blocks. For
example, a database is needed for storage. Anatheal part would be the application
that performs the defined calculations. This thesiisfocus on the mathematics of that
application, i.e. how to treat the data mathembyicihe implementation of the
application won't be discussed further. But theaapts of his thesis should be
applicable regardless whether the application emented as stored procedures
within the database or as standalone software.

1.1 Aim of this study

The aim of this work is to specify the foundatian & computer based system for
historical process ddtshat combines the masses of process data withteematical
model of the process and thereby increases themiatton gained by performing

L A raw data values is simply the data retrievednfaomeasurement.
% The term historical implies simply that the dat@imates from prior timestamp.



operations on the measured values. This condisieaifying a data object and how to
perform operations on instances of that object. ddta objects should, in addition to
the values gained from the measurement, contairakty)description of those values.
This quality description must include measuremeweutainty as one of its dimension.
Measurement uncertainty is a well defined conceptiais often desired to have the
uncertainty in measured values stated explicithisTwork’s minimum criterion is that
the uncertainty evaluation must conform to theaives concerning the reporting of
CO,-emission in Sweden. This specific criterion wassgn since it's an activity that
most Swedish process industries must conduct. @ity was also the underlying
reason for the decision to stipulate the inclusibmeasurement uncertainty in the
quality description at this early stage.

The two most prominent features that complicatedtapecifications are the time
requirements and the incorporation of measuremacgrtainty into the data object:

» The system should operate on averages valid faifsggbtime intervals rather
than discrete data points. Some arguments foatkissampling rates might
differ whereas handling values specified on a comtirae interval simplifies
the system, save storage space and computatioreblf not performing large
calculations and communicating data at an unnepebggh rate.

» The value of a process quantity might be gainechfome of several possibilities
for each time interval. The uncertainty in the eabf a process quantity might
therefore vary between time intervals.

This work won't cover algorithms of higher concegitlevel, i.e. algorithms that use the
process model to verify or improve on the measurgsnealues. For example, the mass
and energy balances found in many processes prouvitesting opportunities for the
construction of such algorithms. But the explonatid those opportunities and
development of such algorithms don't fit within tti@eframe of this thesis.

The core of the above stated aim can be summagizeédephrased into a couple of
guestions:

* How can the quality of the data be assured wheragirg is used to diminish
the data quantity?

* How can the quality of the result be assured wlacutations are performed on
averaged data?

These two questions will hopefully be answered iaiy by the treatment in the
subsequent chapters.

1.2 A Note on the methodology

The contemplated methodology of this study wastalact a literature review of
previous work regarding the subject and therebgtitiethe most popular methods. The
differences in the characteristics of those methoddd be used to evaluate the
methods and deduce suitable specifications frometmesults. This structure was
abandoned at an early stage due to the poor redutie literature review. Lots of
studies have been conducted on most of the ndibamsl this thesis, for example: data
guality, measurements systems and measurementaintgrLess information was
found on the actual problem of this thesis: asgutfie quality whilst using averages to
diminish the quantity of data.



The lack of input changed the scope of this woidhsly; focus was slightly shifted
towards findinga framework for calculations with averages of meadwalues (in
contrast to finding the optimal framework). A draadi of this approach is the
difficulty to evaluate the adequacy and performaoicéhe proposed framework, no
evaluation in relative terms can be completed dube lack of references. The
specification was therefore developed usirgest known optionriteria, drawing
inspiration and input from related concepts. Thethmdological shortcoming gives this
work a descriptive orientation, resulting in a pyepd framework that doesn’t claim to
be optimal but at least usable.

One aspect of the specification that allows nuna¢eealuation of the adequacy is
measurement uncertainty. These trials and the ppioé¢he measurement uncertainty
were therefore given a prominent role in this theShe methodology of these trials is
described in the chapter 7.

1.2 Disposition

The first part of this thesis, the chapter calladkground, contains short introductions
to three concepts that are important to the remgiparts: measurement systems, data
guality and signal sampling. The aim of the chajselt to provide a review of the
latest research within the corresponding fieldsrhtiter to provide the reader with an
insight on how the concepts affected and were deghthroughout this work. The
second chapter introduces a data object and sgpeoifierations on these objects. The
concept of measurement uncertainty is incorporai¢ide data object but presented in
the subsequent chapter. The slight focusing onrtaingy has been made since the
concept constitutes an interesting topic; it's sabjo requirements, standards and
extensive research. Chapter five contains thepkastof the specifications, how multiple
value sources of the same physical quantity cacobeined to provide a more accurate
value. It constitutes a separate chapter sinagizas notions from both preceding
specification chapters and therefore must be ptedesubsequent to them.

Arguments for the design choices and the final ifijpations are mixed to provide a
clearer view of the theoretical foundation for eabbice. This mixture of results and
theoretical foundation might make it more diffictdtdistinguish between the results of
previous studies and concepts that are innovattdsiwork. A rule to distinguish the
two categories is, as always, that the results@fipus studies are referenced to a
source presenting those results.

The methods proposed in the chapters on uncertaimtycombining multiple sources
were subject to testing. The application used heddst cases are presented in chapter
six; test case and implementation. The tests, theirlts and discussions of the results
are presented in chapter seven. The thesis is edapp with the concluding discussion
in chapter eight.



2 Background

This chapter consists of three independent secti@iserve the purpose of providing a
short introduction to three different concepts. Tih& section discusses briefly the
measurement systems that a system based on thicgpieas of this thesis would
interact with. The second section is a short iniotin to the concept of data quality;
practical issues of this concept will run througls tentire thesis. The third section
contains a discussion of how the sampling proctssta and constraint the treatment

of measured values. No deeper understandings & ttencepts are needed to grasp the
remaining content of this thesis but the chaptdrhwipefully provide the uninitiated
reader with a better understanding of the remainiapters.

2.1 Measurement systems

Industrial processes are often equipped with a oreasent system that performs
measurements at different points in the process. ddn be illustrated as in Figure 1,
where the pointX,..., %o signify sensors conducting measurements.
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Figure 1 - Sensors in a process unit

The measured quantities marked in the pictureiwiihis thesis be referred to as the
process variables (PVX),..,X, and the values from measurements conducted wath th
sensors are the observations.,x, of those PVs.

An example of a class of automatic measuremengsysare the SCADA systems
described in section 2.1.1 below. The PI syster@®8ysoft constitutes another, more



concrete, example (OSlsoft, 2008). The sectiorRhiovides some background on a
standard interface for communication of histortata. It's actually that interface a
system built on the specifications of this thestld have to recognize and not the
actual measurement system.

2.1.1 SCADA Systems

SCADA is an acronym for supervisory control andadatquisition. As the acronym
suggests, these are computer systems for gathenohgnalyzing real time data. They
are used to monitor and control a plant, equipriremtdustries or other types of
complex activities such as a municipal water sysfdfabopedia: SCADA). There is
some confusion around the definition and the disiam towards distributed control
systems. A distinction is sometimes introducedthyirsg that SCADA systems
coordinate rather than control processes (WikipesizZADA).

The system usually consists of four types of sulesys (Office of the manager;
National communications system, 2004):

* A Master terminal unit (MTU), which gathers dataamd sends commands out
to the process, the central unit that processestanes the data.

* Remote terminal units (RTU), the units that actuabmmunicate with the
process, for example, a programmable logic comtrofLC) that amongst other
things acquires samples of the process from sensors

 HMI, a human-machine interface that communicatésmation from the
system to its operators, for example, notifyingdperators about alarms,
visualizing real time data and plotting trends.

» Communication infrastructure; connecting the pafta real time systems can be
nontrivial when they sometimes cover 7000 km okpies (Case Study: OPC
connects large SCADA Gas Transmission System ttoGws Systems).

So the SCADA systems are often quite large and doatpd. But this thesis won't
require any details about these systems since g & most SCADA systems
includes a historical data server (also calledohish). The historian logs the data from
the SCADA system and supplies the data for extarsal The interface provided by the
historian could be used in the construction ofsteay that uses various measured
values from the process and therafter performsatipgis using those values.

2.1.2 OPC foundation

The OPC foundation (the name OPC is an abbrevi&mio®le for Process Control) is
an organization that produces standards aimingawige interoperability in industrial
automation and enterprise systems that supporsind(OPC about). According to
themselves, their members inclutgarly all of the world’s major providers of contro
systems, instrumentation, and process control s\&©®PC about).Their standard
Historical Data Access (OPC HDA) specification ¢euntly at version 1.20) specifies an
interface for communicating historical data. An Ierpentation of this interface would
allow a system built on the specifications of tthissis to communicate with a wide
range of data providers and facilitate other apfilimis communication to the system.
The specification will be used as a guideline thfoawut this work. It will be a guideline
in the sense that it provides information abouttwha system sketched by these
specifications can expect when retrieving data fhastorians. It also provides a list of
and information about standard aggregates thatdteumplemented.



2.2 Data quality

Using sensor based automatic measurements sysstrists the data quality. The
sensors themselves have restrictions, often pHy#hed limit the numerical precision in
the measurements. Failures and malfunctions irosg@se commonly occurring,
returning erroneous or no values at all. Data msiog is likely to amplify the initial
error, for example, by the sampling process. Omeratike aggregation, combination
and evaluation are performed to reduce the datatiar to extract information. This
may summarize the inherent errors but also intredwew ones. Knowledge about the
quality of the data used is therefore essentialesihe data often is used in reporting,
decision making and other activities where the ougb activity is likely to inherent
deficiencies from input data (Klein, 2007).

The notion of data quality is a multidimensionahcept. A literature review in the mid
90’s showed that a multitude of dimensions wergpsed with no consensus of a
suitable set nor exact definitions for the propadi@sensions (Wang,1995). Examples
of dimensions that were frequently mentioned ameststency, completeness, accuracy
and timeliness.

But there are good examples of sets that aim t® @igeneric and complete description
of the data quality. For example, Wand and Wan@§) performs ilPAnchoring data
guality dimensions in ontological foundatioas analysis of data quality based on
inconformity between the two views of the real wissl/stem; the view obtained by
direct observation and the view inferred from thi@imation system. Their analysis
generated a set of four data quality dimensiongtkdr the data can be: complete,
unambiguous, meaningful and correct. Their usagecoinformity to discuss
dimensions does, apart from aid in the deductiom r@fasonable set of dimension,
provide useful interpretations of the dimensionstdgtunately they, as so many others,
fail to discuss how the dimensions can be operaliped. Theoretical definitions
cannot be directly implemented in methods thatssstiee data quality, not without
operationalization and methods for propagation. derationalization and propagation
methods are likely to be problematic and this wwilktherefore use notions that give
sufficient information about the data quality andds on the operationalization and
propagation of those notions.

Someone who has treated the more practical issube quality of data from a
continuous stream of samples generated by an atitomeasurement system is Anja
Klein. She identifies ifncorporating quality aspects in sensor data stredine

problem with unreliable sensors as a data sourdeusiness applications and the need
for reliable knowledge about the quality of theada&der solution is to stipulate that
three dimensions are needed for a good descripfitre quality: accuracy, confidence
and completeness. The different dimensions aiaetths:

» Accuracy, the data quality dimension that describe the nigaleprecision of
measurement data (the errors that the measuremE@sses introduce).

» Confidence the data quality dimension that signifies th@exthat the
sampling operators introduce.

» Completenessthe data quality dimension that addresses thelgmoof missing

or bad data values due to failures or malfunctiorthke measurement process.

Klein also defines methods for assignation of nucaéwvalues of those dimensions to
specific data and how to propagate those qualigsmess through different operations.



She provides a whole framework for handling dataliguin an application that
receives continuous data, exactly what is needékise specifications.

Her work served as source of inspiration when dgueg the data object and
operations presented in the subsequent chaptezgh&bretical discussion in her work
may be limping and the theoretical foundation wieakshe actually provides a neat
framework for working with the three dimensionstéls on this framework and
additional information can be found in the origipapber. More on how the treatment of
data quality in this work was influenced by resfittsnd in the literature can be found
in the sections concerning the data object andatipeis on that object.

2.3 Signal Sampling

This work isn’t directly concerned with the sigsaimpling but working with averages
of samples or the samples themselves are, of caelaéed concepts. Two aspects of
signal sampling that must be considered in thiskveoe:

» The systems sources of measured data might useatiffsampling rates.

* There are firm limits on the density needed foradats to represent a continuous
signal accurately; lowering the number of data soor performing operations
on a data set might therefore result in informatass.

The aim of a system that operates on averagesasuese, to use averages over longer
time intervals than the most frequent samplindngndystem while retaining the
accuracy and validity of the values.

The Nyquist sampling theorem provides limits fomhoften an analog signal must be
sampled in order to enable exact signal reconstructhe theorem states that the
sampling frequency must be greater than twice #melwidth of the signal (Glad &
Ljung, 1981). Hence to get all sought informatioonfi a signal with the highest
frequency of interest at 1 Hz, the signal has tedmapled more than twice a second.
The sampling process in practical applications dife operate on a significantly
higher sampling frequency than twice the bandw{ittikipedia: Sampling).

The sampling rates of a measurement system arduligpset in a correct manner,
resulting in data sets that represent the measamgables well enough. But the
specification of a system that performs calculaion the measured data is facilitated if
all PVs have data points available at correspontiing stamps. This desired
functionality can always be fulfilled since upwas#Mpling rate conversion can be
applied to the PV that are not the most frequesdiypled. The upwards sampling rate
conversion is achieved by interpolation (John Weg&hn, 2002). In the most
straightforward case, where the sample rate islddupoints are added halfway
between the original samples and their value ggia suitable interpolation method
(Wikipedia: Sample rate conversion).

There are normally restrictions to the rate (orsitghof data points when calculating
and storing numerous variables. A variable desdriiyea data point per second would
need approximately one MB per day in storage spaaa OPC Historian (Kirrmann,
2005). Hence a historian logging measured valud900 variables would need one GB
of storage space per day and 365 GB per yearagorable representation in Java,
representing the value by a double and the timgstana long, corresponds to a usage
of 1.3824 MB per variable/day for variables stooede per second. Storing these
amounts of data wouldn’t constitute a problem. 8stower rate might be preferable if



each data point has to be stored, communicateddhrshared networks and used in
calculations.

The other, theoretical, option to obtain a datadedre all variables have points at the
same points in time would be to downsample (dowds/aample rate conversion) the
more frequent sampled variables. In digital sigmacessing, downsampling (or
subsampling) should ideally be carried out witlpees to the Nyqgvist sampling
theorem.

The operational frequency of the system can beredvby introducing averages.
Averaging can be regarded as a sort of subsamplinghanges the situation slightly.
Averages formed from a sufficient set of data iate indeed valid average values for
those PVs. But what happens when two averagesarbiged to constitute an average
of a different PV? Can such operations be consitheaéid? Table 1 illustrates two such
operations; addition and multiplication. The exéenp the table indicates that the
linear operation addition produces a correct avexadue for the output even when the
two underlying datasets contains variation. Thdinear operation multiplication

seems to be more problematic, multiplication oftthe averages of Yand X% results in
18.24 which differs from the result gained by npliting the individual samples.

X1+X5 X1*X 2
12
20
8
7
63
6
18
7
16
14

8 4.8 8.6 17.1
Table 1 - Combining and averaging of two PVs

<
X
N
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The error for the multiplication of the average§able 1 can be explained in terms of
the Nyquist sampling theorem. If the intervals weesen too long, i.e. the true values
of the actual quantities measured vary within ttterval and then nonlinear operations
on the averages will produce erroneous resultscélezhoosing the time interval for the
averages too long can be considered synonymoushithsing the sampling rate to
low. If the intervals were chosen adequately, tienmeasurements were affected by
some erroneous effects, for example, signals dfdrifrequency than those of interest
to the measurement. Then multiplying the averagelsgbly provides a more accurate
value and the difference against multiplying eaain pf samples is due to cancellation
of the erroneous effects.

10



3 Object and operations specification

This chapter specifies the data object, analogfiekementary arithmetic operations for
the data objects and slightly modified implemetadi of the functions specified as
standard aggregates in the OPC HDA.

3.1 Data object

The requirement on the specifications to consiglerage values rather than discrete
data points simplifies the specifications in maagects. It also brings on problems due
to the loss of information caused by substitutiegesal raw values for their average.
The problem of choosing suitable time intervalstfa averages will be treated by
introducing the notion of unit time and the concefpactive time.

Unit time is the length of the common time interval for #werages of PVs. The length
of the unit time should ideally be set in accordawith the bandwidth of the measured
PVs, the operations performed on the PVs and theohihe system. The average value
of a PV over a unit time interval incorporatedtie data object of this section will be
denoted aunit time average

The information lost when averaging is slightlywedd by giving the data objects an
attribute corresponding to the length of the sugrirdl where the measured quantity has
been an active part of the system treated. TheHeofghis subinterval will be noted the
active time of a unit time average. This active time can, afrse, also be used as a
switch indicating when a PV should be includedafcalation and so on, this by setting
the active time to zero.

The description of the quality of the data will lue two measures of the accuracy and
one of the completeness. The accuracy of the déthendivided into two categories to
make a distinction between both the origin and neatdi the imperfections. The
categories are, as in the work of Anja Klein, inipetions in the measurement of a
single data value that lowers the accuracy anefioes introduces by the sampling
process. The first category will be calledcertainty and the seconcbnfidence
Measurement uncertainty is a well defined concagtsome activities, such as
reporting CQ-emission, require that the concept of uncertamtysed to establish the
quality of the data used to calculate the emisgiming the concept of uncertainty and
conforming to the standards and regulations corregtthe concept is therefore
beneficial for systems that perform operations wioatically measured process
variables.
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Figure 2 - Data object

A suitable object to represent the unit time avesag presented in Figure 2. There is a
self-explanatory need for attributes containingakierage value and the time period for
which the average value is valid. The object predds Figure 2 uses a slightly more
detailed time description. Active time has beenealdith the basic description of a time
interval consisting of start time and duration. sTimclusion aims to reduce the
erroneous effect of processes not even being afcineertain parts of the time period,
as mentioned above.

The three attributes completeness, confidence aoértainty can be regarded as
different attributes describing the quality of thega.

The standard deviation is included since some vailtiee spread might be desired. No
other attribute offers any information about theiateon within the time periods. An
application would be to verify the measured valfiesexample, unexpected spread in
the values or constant values can indicate comgatsurements. It's also used in the
propagation of confidence. All the attributes ajliie 2 are described more elaborately
in separate sections below.

3.1.1 Value

The average value of a data object consists ofasuned or calculated value that is
valid for the time period specified in the dataemj The time period is the interval
starting at the time stamp and ending the numb#&maf units specified as duration

after the time stamp. The average aggregate spe@ifiOPC HDA can be a regarded as
a specification on how to compute the average gadunel as an example of a possible
interface towards a source providing average valuése system. The OPC HDA
specifies the average aggregate to be the aritbrmegirage of all good raw values in

the interval. The section on completeness contuliscussion on the significance of a
value being of good quality.
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3.1.2 Uncertainty

Uncertainty is an attribute that expresses the @mrthe value that was caused by
imprecision in the measurements. This conceptheiltlarified in the chapter with the
same name.

3.1.3 Confidence

Klein defines confidence as a parametEX ) such as the interval

[x—£(X),x + &(X)] constitutes a 95%-confidence interval for the ®¥6r whichx is a
random sample from the time interval specifiedimetstamp and duration (Klein,
2007). A normal interpretation is that there isSap@rcent chance that the true value of
the variableX lays within the interval (Klein, 2007). The integpation and usage here
will be slightly different; the confidence will hesed to indicate undesired variance and
erroneous effects due to the treatment unit tinezages derived from varying data
points. The intervals produced by applying the psgal formulas aren’t guaranteed to
hold a 95 percent confidence level. Both unceryaamd confidence should be regarded
as attributes that penalize the accuracy in theevdut confidence is a less exact
concept and shouldn’t be combined with uncertaiotgroduce a common confidence
interval. Having two different attributes that dele the accuracy won'’t constitute a
problem in systems where the unit time has beesarhoarefully. Those systems will
have low confidence on the unit time averages haadonfidence will decline further
when the PVs are aggregated over time.

A numerical value for the confidence of a unit timeerage where the input consists of
raw samples can be calculated in accordance watsdamples estimate as

n

£(X) = (O'ZU_Z(X)J}/ 3.1)

where o % is the variance oX in the intervaln is number of all data points in the
interval and d is the coverage factor that expainesnterval to a 95 percent confidence
level (Klein 2007). The coverage factor should bawkd from the student’s t-
distribution withn-1 degrees of freedom but the value two can be used a
approximation for systems where n has a minimalezalround 20. Hence the
confidence will be zero for unit time averages catep from intervals containing only
non-bad data points (non-bad data points will fendd under completeness below).
Klein introduced this notion to penalize a dateatn that has been subject to
downsampling. Missing data points can be considasaghintentional downsampling
and boosting the confidence of intervals contairiad data is therefore appropriate.

If any of the inputs used to construct the unitetiaverages has been subject to any
other downsampling technique and therefore beagrassa confidence value, then
those confidence values has to be incorporatefXf. The new expression can be

constructed as

13



(3.2)

WhereZa‘z(Xi) is the sum of confidence of the inputs and alhp@eters have the
same significance as in equation (3.1) (Klein, 3007

The confidence is important for variables that@mestructed from problematic
combinations such as multiplication; an explanatbproblematic combinations can be
found in the section sampling of signals. The inoce is guarded when the variable is
aggregated or combined further. This will hopefldg/fully clarified in the description

of the operations and aggregations, where the dende will be reduced for linear
operations and aggregations and increased formeanliditto. Appendix A contains a
more elaborate description of the concept and rattims of the proposed formulas.

3.1.4 Completeness

The completeness of a unit time average will béndefas nothing else but the
percentage of samples that were included in treulzlon of the average (it assumed
that the averages where calculated over an intéhesl with data points separated by a
fixed distance). There is no absolute interpretatibthis quality parameter such as
those describing the accuracy, but it providesrmfdion on both the amount of
substance there is behind the numerical valuesamething about the success and
thereby reliability of the automatic measuremessteay. Hence, a low completeness
implies the direct effect of less reliable numéricdues due to fewer values used in the
computation. It also implies an indirect effecttba reliability due to the closeness in
time between the values used in the calculationnaalflunctions in the measurement
system, which implies that the values used migkiehseen affected by erroneous
effects (this stipulated indirect effect would h®@ed by a system that could identify
all malfunctions in the measurement process).

OPC has three categories to indicate the qualitlatd; good, uncertain and bad (Data
Access Custom Interface Standard, OPC). The exdictition of the categories is
server dependent. But assigned an identifier repteg) the quality of each OPC data
object is mandatory.

According to the specification, all OPC-HDA aggreggashould omit bad data from the
calculation. Whether uncertain values should brided or not is server dependent. If
all data points in the time period are includethia calculation, then the quality is good.
If any values are omitted from the calculation tktes quality of the aggregates is
uncertain.

OPC specifies that only good raw values shoulddesl o calculate certain aggregates,
when can a unit time average be consider goodjaodting from the propagation of
quality in the OPC specification would imply thatlp unit time averages with 100
percent completeness should be considered goodxak definition will be given here
and the section below will use the term good qualitt this should be interpreted as
unit time averages with sufficient completenesssystem built after these
specifications should define an exact level of clatgmess for values to be considered
of good quality.
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3.1.5 Time Stamp

The time stamp is the point of time (expressedMil{that initiates the time period for
which the value is valid.

3.1.6 Duration

The duration is the length of the time period egpeal in unit time for which the value
is valid.

3.1.7 Active Time

Active time represents the length of the time pkudere the PV has been an active
part of the production process. The length of tinie interval should be expressed in
unit time.

3.1.8 Standard Deviation

The standard deviation of the raw data points iséd in the OPC HDA version 1.2
and that definition will be reused here. Valuegespnting a time period of one time
unit derived from good raw data have the deviatiom the mean of those good data
points. A constant or a single raw data point hesaadard deviation of zero. OPC
specifies the formula to be used as (3.23).

3.2 Basic operations

Since PVs of interest have some relationship tgthesical reality there are also given
relationships between process variables in thesysthese relationships can be used
to combine different measured values to obtaineshf nonmeasured PVs,
alternatively values for measured PVs or quantttiés aren’t found in the process. The
set of operations on PVs presented in this sectioisists of the elementary arithmetic
operations: addition, subtraction, multiplicatiamdadivision. But there is no logical
need for this restriction; the set can easily hgaexed to contain other mathematical
functions. The elementary arithmetic operationsewdrosen since they are assumed to
be the most commonly occurring operations and dotesintuitive examples. A

general note for all kinds of operations is thatr¢hhas been a loss of information when
creating the averaged values representing a tinteHow this affects the value was
discussed in the section sampling of signals baisi influences other attributes.

The active time represents the time a PV has beagctive part of the process within
the specified interval for which the process vasasb valid, but if the active time is
smaller than the interval there is no way of tegllmhere in the interval the PV has been
active. The general rule used to define these tipasis:two process variables being
combined are assumed to be active at the samespnoitime to the largest extent
possibleThere is no mathematical foundation for this rblg, it can be argued to be a
good assumption in relation to reality and won'stitute a problem in a well defined
system were the unit time is chosen appropriately.

For what time interval is the output valid? Thissther impossible problem, there is
no way of knowing unless the real time intervatha output is explicitly defined in the
system. One rule can be stated, an effect caneat earlier in time than its cause.
Therefore, to be consistent with the assumptionerambut active time, the timestamp
plus the duration of the output cannot be eartiantthe timestamp of any of its inputs
having active time. The solution to this problenwigjive the output the timestamp and
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duration of the, in respect to time, latest ofnfsuts. This is to be considered as the
general rule but it causes some special casewilhae treated in the definitions below
(for example, no PV should have a greater active than its duration). An
implementation with a strict usage of unit time @odhmon timestamps for all PVs
largely evades this problem.

The quality parameter confidence is designed tordesthe loss of information due to
variations in the sampling rate. These deviati@scdbed by the confidence will be
assumed to be completely random which impliestti@tonfidence parameters of two
data object can be assumed independent. The cooéigerameters will therefore be
combined by Gaussian error propagation as in (§®8in, 2007)

£v)= \/2[5_;]252(&) 3.3)

Nonlinear operations will add further terms to #wgiation to compensate for the error
they might introduce. The general form for confidempropagation for nonlinear
operations:

e(v)=zJ[ ] )+ 2 et @)

oX, X,

with the same denotation as in equation (3.2). phiwlization can be described as the
error generated when using unit time averagesddstéthe data points that used to
calculate the averages, assuming that there waevasiance between the inputs.

The last problematic parameter is the standardatien. Since the correlation between
the two process variables most probably will benavin there is no way of calculating
the standard deviation for the output correctlye Thalculation will therefore be
performed equally to how the operations would b#opmed on two independent PVs.
Hence the similarity between the standard deviaimh confidence continues.

A couple of numerical examples of operations betwiee PV are presented in
appendix B. The first operation in the examplées addition presented in section 3.2.1
below. The second is the multiplication specifiegection 3.2.3.

3.2.1 Addition

The addition of to process variables is not simpé/addition of their value parameters.
Since they represent average values of physicahpeters, the active time (denoted
a(X)) of that measurement has to be considered farafoeilated output to be a correct
average value over the new active time. The owtfllitherefore be calculated as the

accumulated sum of the inputs and thereafter divieactive time of the output.
Hence, the value of the outpuwill be:
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a(X,) X, +a(X, )X,

maxa(X, ).a(X, )

Y =

(3.5)

The timestamp of Y will be set to the earliesthad tnputs timestamps and the duration
according to:

d(Y)_{maX(d(Xl), s(X,)) it s(Y)=s(X,)Os(Y)=s(X,)=s(X,)

- [maxd(x,).s(x,)) if s(Y;: s(x,) (3.6)

Since the two inputs are assumed to have theireatithe in common to the largest
extent possible and addition implies that the ouipactive when either of the inputs is,
the active time of the output will be the largestivae time of the inputs.

a(Y) = maxa(x,).a(X,)) (3.7)

The standard deviation, calculated as for indepeinriables (Rade & Westergren,
1998):

i) =g 206, a0, (o @) rabe)ox, )
) \/E[( b1 g ) .

_a(Xy)std?(X,) +a(X,)std*(X,)
B max@(X,),a(X,))

The confidence, according to equation (3.3):

s<v>:J( "Yj}(xa{ oY jzs%xz) @9)

X,

wnere 3] <[ miby) 0 (3] ~(reenia)

3.2.2 Subtraction

Subtraction of two process variables is almost di#ddition. The value will, of course,
be calculated slightly different. But apart fronaththe logic and assumptions are the
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same as for addition and therefore most of thenperars will be defined in a similar
manner. The numerical Value is calculated as:

a(X,) X, —a(X,) X,

max(a(X,).a(X;))

Y =

(3.10)

Everything else can be calculated according tauhes of addition.

3.2.3 Multiplication

Multiplication suffers from insufficient informatioabout both activity and variation in
the inputs. The value, ignoring possible correlatbetween the inputs, is calculated as:

Y= X,[X, (3.11)

Active time, calculated under the assumption ofiéingest possible common active
time:

min(a(X,).a(x,)) (3.12)

Standard deviation, calculatec:as

std(Y) = /X, 2std? (X, ) + X, 2std?(X,, ) + std® (X, )std?(X,,) (3.13)

where X, represents the observed unit time average anegdassan estimator of the

expectation value. The confidence, penalized, aucgrto (3.4), to compensate for
variation within the unit time average inputs:

Y) =2 X,22(X,)+ X,22(X,) (3.14)

®If X and Y are independent, so a%”and Y * Hence E((XY)Z) = E((X )2 )E((Y)z)
and:

StdZ(Y) = E[(X,X,)*] - (E[(Xlxz)])z =E[X,"]E[X,’] - (E[Xl])Z(E[XzD2 + E[Xlzl(E[xz])z - E[Xlzl(E[xz])z
= B[X,]7std”(Xy) + B[X,“Jstd” (X, ) + E[X,]"std? (X, ) ~ E[X,]*std*(X,)
= E[X,]?std?(X, ) + std?(X, )std?(X, ) + E[X,]?std?(X,)
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3.2.4 Division

Is basically the same operation as multiplicateodjvision can be converted into a
multiplication with the valid substatioX, = X, and vice versa. This affects the
calculation of some attributes, for example, thmarical Value:

y="21 (3.15)

Standard deviation:

stdY) = \/ le stdz(Xl)+std2(Xl)std2(;’J xlzstdz(XlJ (3.16)

2 2 2

Confidence, according to (3.4):

e(v)= ZJ xl £2(x,)+ X0 7 (x,) (3.17)

3.3 Aggregation

The aggregations that are to be considered heth@se specified as standard
aggregates in OPCs specification of historical datess version 1.2 (OPC HDA). The
standard aggregates of the specification contairgxample: arithmetic average, min,
max and count. The idea is not to provide strigilementations for the standard
aggregates, rather to provide implementations afmmgful counterparts of them. The
standard aggregates won't always have meaningeigretations since these
specifications are concerned with unit time avesagéher than raw data points.
However, the list of standard aggregates providatié OPC standard is used because
it's assumed to contain commonly occurring aggregathose counterparts probably
are a desired functionality of a system that presidalues and aggregates of PVs.

An incremental structure in the calculations of élggregates is desirable. An
incremental structure where each data object id asee doesn’t require the whole data
set of the aggregation to be kept in memory througkhe calculation (or alternatively,
thrown away and thereafter retrieved, once ageam the data source) (Holmberg,
2008).

Formulas that calculate the aggregates incremgmdlltherefore be identified
whenever possible. This will be achieved by divipihe standard aggregates into parts
that can be calculated incrementally and thoses [ganmarized in the aggregate object.
The specification of an aggregate object that énstall of the incremental parts is
mostly for illustrative reasons but can facilitatgplementations where all standard
aggregates of PV are calculated automatically simary of the incremental parts
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reoccur in several standard aggregates. Prededum®dnatic calculation of aggregates
is motivated by large computational time for agaiteg of some PVs. A common
approach is to automatically calculate aggregates predefined time periods such as
days, weeks, months and years (Holmberg, 2008)inidnemental parts needed to
calculate the aggregates will be identified ingketions describing each and every one
of the standard aggregates.

3.3.1 OPC standard aggregates

All the definitions concerning the standard aggtegan this section can be found in the
OPC HDA. The OPC standard aggregates will be reghrals mentioned in chapter 2,
as nothing more than a suitable list of mathembdiggregation functions to implement.
The definitions will therefore be modified to fitsgstem where the basic data are
averages. All references to the OPC specificatiahis section should be regarded as
proposals, possibilities or expected functionadityhe measurement systems that
constitute the contemplated data sources.

The specification states that each OPC standanmggage must be specified by three
time parameters; start time, end time and samplitegval. The specification defines
what data points are to be used and how to intdrajeolate when data points are
missing for different combinations of the input®RC HDA)

But there is no logical need for implementationshefse aggregates to restrict the
specification of the data included to the threestparameters of the OPC HDA. Any
other attribute of the data objects can be usednstrain the data included. For
example, active time can be used to exclude timegewhere the PV hasn’'t been an
active part of the process or a minimum limit o@ dompleteness used to select only
reliable data. No specification of suitable methfmsconstraining the data will be
presented here. The formulas and object presemtiw isections below are specified
for a set of unit time averages as input and aifected by the selection of this set.

The specifications of the standard aggregates &es@oncept of data quality. The
quality of the aggregates is specified as: gooderain or bad (OPC HDA). Most
standard aggregates are considered to be of gaddyqgbiall raw values in the
specified time interval are of good quality (OPC AJDThe quality of the aggregate is
uncertain/subnormal if any of the raw values intthee interval are of uncertain or bad
quality (OPC HDA). Exceptions to these rules wél tlescribed in the corresponding
section below. This thesis interpretation of goadldy was discussed in the section
3.1.4 and applies to the aggregates in the samaanan

The sections below won't specify the completenesng other quality measure for
each single aggregate but the overall quality efatgregate object will be described in
terms of the three quality parameters: uncertasupfidence and completeness.

3.3.1.1 Time average or weighted average

The definition of the standard aggregtitee averageis a function that draws straight
lines between raw data points, thereafter calcsitdte area under the lines and divides
the areas by the length of the corresponding tirterval (OPC HDA). This definition
must be slightly modified since this system utdizetive time as a basis for time-
dependent calculation§ime averagewill therefore be defined as the sum of unit time
averages weighted against their active time. Tterpolative approach of drawing
straight lines between the data points is redunsiace the unit time averages
constitutes values valid for intervals of time etthan instants. This is calculated as:
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Zn:a(x )X

> a(x,)

time averagéx )= —— (3.18)
=

wheren is the number of unit time averages with staretimthe time interval.

The definition of the time average can easily beresed to a more versatile aggregate,
theweighted average Thetime averageis a useful concept when dealing with
accumulating quantities. But time average lacksmmegiul interpretation for non-
accumulating quantities such as density; it wouldive any information about the
average density for the corresponding mass. Faatheage of density over a time
period to make sense it has to be weighted agtiestolume flow over the time period.
Thus theweighted average

n
Zci X;

weightedaveragéX ) =1 (3.19)

Zn:ci

=

where eaclt; represents the weight associated with the unit dwerages; in the
interval.

These two formulas can be divided into the follagvincremental parts:

ZCI X ,ZC, Z )X, andz ). Calculating the two aggregates from these

mcremental parts should be self evident from trenilas above.

3.3.1.2 Total

Total is defined by OPC as the product between timesaeeand the length of the time
interval (OPC HDA). The time average is the refioiin a time average call with the
parameters inherited from the total call and theriral length should be expressed in
seconds (OPC HDA). The total aggregate is only mmegul for accumulating process
guantities:

total(X ) = timeaveragéX) Dia(xi) (3.20)

No new incremental parts have to be added to theeggtion object to calculate (3.20).

3.3.1.3 Average

The OPC definition of thaverageaggregate differs from time average by not
considering the length of subintervals. Instea, filmction simply adds up the values
from all good data points in the interval and desdy the number of good data points.

21



n

2%

averagéX) = izln (3.21)

Two new incremental parts has to be added to theeggte objectz x, and the
i=1l

numbern of good unit time average in the interval.

3.3.1.4 Count

Count returns the number of good raw data points withinngerval. If any data points
are non-good they are excluded from the count liscatso lowers the quality of the
aggregate to uncertain/subnormal. The equivalenirid time averages is self-evident
and no new incremental part is needed.

3.3.1.5 Standard deviation
In the OPC specification the standard deviaticteiéned as

Zn:(xi ~ AveragéX ))?
Std(X) =14/ 12 n=23...0 (3.22)
n-1
0 n=1

whereX are the n good data points in the intervah # 1 the functions should return
zero. This can be rewritten as

n

znpqz - 2AvEX)> % +nAvéX)’ ) gxf —nAvéX )’

StC{X) = i=1 i=1 n: 2’3_.00 (323)
n-1 n-1

0 n=1

implying that the standard deviation is construdtedh three blocks that can be
incrementally calculated over the interval, therage value and number of good unit

n

time averages is already identified above, the aely part isz xi2 , the sum of
i=1

squares.

3.3.1.6 Variance

The variance is the square of the standard dewiainal inherits therefore the behavior
of the standard deviation aggregate.

3.3.1.7 Regression coefficient and constant
A regression line is, according to the specificatia “line-of-best-fit” over the interval.
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A least square-estimate of a lise=alo, +b is given by

o= Suaw o) Suwx (324

assuming that the matrix
- T

Ry =D ¢y’ (t) (3.25)
t=1

is invertible 4 is an approximation of thg = [b a]T that minimizes the sum of
squares

Y (x - ) (3.26)

t=1

and l//(t) = [1 0, ]T. Theo; corresponds to the time offset from the aggregstes time

to the start of the unit time average with indekhe two sums in the expression can be
divided into parts during the calculations. Thetpaeeded for the final evaluation

N N N N

would be:> 0, , >>0*, > x and > o,x, for all good unit time averages in the
t=1 t=1 t=1 t=1

interval.

The incremental parts can be inserted into (3.8d)evaluated as:

N N N N
= 02 - (0] 0,
6=\> 1 ol X[ k= 1 B0 ETEOEN o)
Z_:O Ot —| o XI N 2 N N N N N
t=1 [ Yt t=1] “t Nzot _Zotzot Nzotxt - thot

All the products of sums in (3.27) might look coiopted at a first glance, but once the
sums are computed, evaluating (3.27) constitutesfefv elementary operations.

3.3.1.8 Minimum/Maximum And Minimum/Maximum actual time

This OPC aggregates minimum/maximum should simgiyrn the minimum
alternatively maximum of all good raw values (OPDAJ. The equivalent here is the
aggregate that returns the minimum/maximum of thieaverage values. The
minimum/maximum actual time aggregates returns#me value but it also provides
the timestamp of the minimum/maximum values ocaweg(OPC HDA). The oldest
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minimum/maximum should be returned if there is mbin one occurrence of the
minimum/maximum value within the interval (OPC HDAe quality of the aggregate
is subnormal/uncertain if any non-good value isdowigher than the
minimum/maximum good value (OPC HDA). The min/maue and their timestamps,
though not incremental in structure, have to beesktin the aggregate object.

3.3.1.9 Start/end

The start aggregate must return the value of teeraw value, and the end should
return the last (OPC HDA). The corresponding agatedor unit time averages is self-
evident and OPC defines the quality of the aggeegatthe quality as that of the raw
value returned.

3.3.1.10 Delta

Delta is defined as the difference between thé go®d raw value and the last good raw
value (OPC HDA). Hence the corresponding aggreigatenit time averages returns
the difference between the first and last unit tamerage. The quality is
subnormal/uncertain if any non-good values exisbteethe first good or after the last
good value (OPC HDA). The first and last good tinite averages have to be stored
continuously in the aggregate object to enablesimental calculation of this aggregate.

3.3.1.11 Duration good, percent good, duration bad and percent bad

These aggregates correspond to the duration acdmiage of the total duration of
good/bad raw values in the interval (OPC HDA). Elggivalent for unit time averages
can be formed by simply substituting the raw valiegghe unit time averages. The
other possible interpretation of these aggregatassidering the percentage of duration
in the values used to calculate the unit time ayesais covered by the completeness.

3.3.1.12 Worst quality

The OPCs definition specifies that worst qualitgr@gates must return the worst
quality found amongst the raw data in the inte(@®C HDA). The value of this
aggregate can be improved by returning the lowasipieteness of all unit time
averages of the interval. Hence the lowest commpeste has to be stored in the
aggregate and updated when it's appropriate.

3.3.2 The aggregation object

The quality of the aggregates should be descrilggdtidosame parameters as the unit
time averages. Klein, in her treatment of dataastrie specifies the completeness of an
aggregate to be the average completeness of ahimg tuples, indifferent of the
aggregate operator used (Klein, 2007). This spetifin inherited the concept of
completeness from her work and will therefore penféthe aggregation equivalently,
calculating the completeness as the average cosmgles of all unit time averages in
the aggregation. But defining the uncertainty aoifficlence is problematic, the
interpretation of the parameters must remain theesand some aggregates, for
example, duration good, doesn’t even relate tontireerical value of the PVs. The
propagation of confidence should be conducted aoegito (3.3) or (3.4), with a slight
modification of the formula to consider differemtittime averages for the same PV
rather than combining different PVs (Klein, 200¥his formula applied to the weighted
average will be considered as an adequate conkdemasure for the entire aggregate
object. The specification of confidence for theirenaggregate object is a good
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substitute for specifying the propagation of thislity parameter for each of the
standard aggregates. How to propagate the undgrtaitreated in chapter 4.

Aggregate object
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Figure 3 - The aggregate object
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The aggregate object and all its attributes argvahin Figure 3. The introduction in
section 3.3 mentioned that the usage of a singiesg@te object isn't a necessity but
might save some storage space and computatioral Tile attributes assigned to the
aggregate object aren’t either a fixed concepteQ#ggregates requiring other
incremental parts are wanted can easily be incatpdrinto the concept.
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4 Uncertainty

This chapter on uncertainty serves three diffepamposes: to define the perspective on
measurement uncertainty of this thesis, to giveef bummary of the requirements on
uncertainty evaluation for carbon dioxide emisgigports to control bodies and finally
to introduce methods that can be used for autorsatitgputerized uncertainty
evaluation.

The theoretical description ventilates uncertaintgneasured values and doesn’t
explicitly describe how uncertainty in averageswtide treated. But the extension
from single values to averages can be deducedttertheory and will be briefly
discussed in the section propagating uncertaingvefages.

4.1 Definition of measurement uncertainty

Every measurement of interest is associated witleserror. If a measurement is known
to be free of error, then the true value of the snead quantity must be known,
consequently the measurement doesn’t provide usamy new knowledge and is
therefore off less interest to us. The sourcesrof é measurements are normally
divided into two categories; bias and uncertaiBigs are errors spawned from
imprecisely determined contextual conditions oreémigct models, leading to
systematic errors in the measurements. Uncertaimtys appear at random and have
zero mean. (Gleser, 1998)

Other definitions of uncertainty do exist and samight be more conceptually intuitive.
Jan Lindskog introduces, Matvardesbehandling och rapportering av matvarden
definition where the uncertainty is the lack ofdedn a measurement (Lindskog, 2006).
The ISO guiddnternational Vocabulary of Basic and General Teim#&/letrology

(VIM) considers the uncertainty to be a parameter, ededavith the result of a
measurement, which characterizes the dispersitireofalues that could reasonably be
attributed to the measured quantity (cited in NIS0J00).

The concepts are fundamentally different in thatdkfinitions of VIM and Gleser
regard uncertainties as entities with certain attarastics whereas Lindskog's
definition is based on the lack of a notion. Nelelgss they all treat uncertainty by the
same mathematical methods and those methods ameajbe concern here.

A widely adopted set of guidelines for evaluatimgl @xpressing uncertainty is given by
the 1ISO standarGuide to the Expression of Uncertainty in Measunen@UM) (see
Lindskog, Gleser, NIST et al). The approach presgirt this and the following section
aims to be consistent with the GUM.

4.2 Uncertainty expressed by statistics
Uncertainty in measurements is commonly expressathtistical terms A

measurement of a PX can be written a = x + Zv + Ze where X is the true

value ofX, x the observed value; nepresents biases agdincertainties. The
uncertaintie® can be expressed in terms of a probability digtrdn (PD) (Cox &

Harris, 2006). One standard deviationEfe, will be denoted the standard uncertainty
and u(X) is the notation of the standard uncertainty foohservation oK.
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The methods presented below don't treat bias, boly to evaluate the uncertainty. The
value of a measurement should be corrected fobitde to the largest extent possible,
before the uncertainty is evaluated. Note that mosgections will themselves
contribute to the uncertainty of the measurement.

4.2.1 The two types

Measurement uncertainties are normally categoiigedwo types, type A and type B.
Their classification is not based upon their natureon how they are derived. The type
A uncertainties are derived by statistical analgsiepeated measurements of a
stationary quantity. The variation of measurememti®s around the average will, by the
central limit theorem, result in a normal distriéditapproximation of the uncertainty.
(Lindskog, 2006)

The type B uncertainties are uncertainties thatlarezed by other methods. E.g. these
can be uncertainties specified in instrument spetibns, manuals, calibration
certificates or other publications. But any othatihod of assessment, for example, a
manual assessment conducted by an expert, wilhfallthis category. (Lindskog,
2006)

The GUM and other publications do often mix thesage of this categorization. They
sometimes refer to uncertainties of type A or Beveas it is not the uncertainty itself
but the method used to identify the magnitude efuhcertainty that is of type A or B.
Most uncertainties can be identified with the typeethod. The reason for this mixed
usage is convenience. The type A uncertaintieshailtiescribed by a normal
distribution whereas the type B might be any diatitdistribution. It is this distinction
that will be of importance when treating uncertigat (Lindskog, 2006)

4.2.2 Combing uncertainty
The outputysysfor which the uncertainty is desired might be lachion of several

inputs, whereYSys = fsys(Xl,----,Xn) would be an estimator for the P¥{,sand each

X; is an observation of the corresponding RVA method is needed to compute a
combined standard uncertainty for the outgysfrom the known standard uncertainties
of the inputsx;. In the GUM, if an approximately linear relatioxigts between the
inputs and output, this is achieved by definingabmbined standard uncertaintf¥sy,)
as:

u(vsygzji( W) + 255 g u o )., an

k=1 i=1 j=1+i

whereg; is the 1" sensitivity coefficient and(>q , xj) is the correlation coefficient

between the"land [" input (Gregory, Bibbo & Pattison, 2005). The ctatien
coefficient is defined as

)E U(waj)

u(x Julx, )

r(xI X

(4.2)

27



where u(>q , xj) is the covariance. As a result of the definitithe correlation

coefficients will be 0 for uncorrelated, 1 for fylbositively correlated and -1 for fully
negatively correlated (anti-correlated) variables.

The sensitivity coefficient; is the partial derivate of with respect to theé"iinputx;,

. of
ie.c =—.
0X.

(4.1) can be used to calculate the combined uringrtwhen the condition of
approximate linearity between the output and tipeiis of the functionf is fulfilled. If
non-linearity is present, then the first order temwhthe Taylor series that constitute
equation (4.1) won't provide enough detail to démcthe relation between the input
and output satisfactory. This can be remedied llyngchigher order terms of the
Taylor expansion. For example, adding the next ter(@.1) would give:

uz(vsys):i(%u(xn] 251 5 b e x)

k=1 i=1 j= 1+| j

;;[ AR f}m(muz(xj)rz(x,xj)

where the standard uncertainifysyJ is the positive square root ozf(YSys). The GUM
can be consulted for more detailed information ¢remvnon-linearity must be
considered Gregory, Bibbo & Pattison, 2005).

(4.3)

The output distributionssysare often assumed to have approximate normallulistsn
(Taylor & Kuyatt, 1994). However if the effectivegrees of freedom for the combined
standard uncertainty is known then the PD candmdd mathematically like a t-
distribution. The effective degrees of freedom barobtained by the Welch-
Satterthwaite formula (Taylor & Kuyatt, 1994):

u4

= (4.4)

=Y

wherey; is the degrees of freedom 8f¢ontribution uncertainty andgy is the effective
degrees of freedom of the combined standard unertd he degrees of freedom for
type A uncertainties are given by the identificatprocess and the type B has to be
approximated. If the type B uncertainties are dpztiwith max and min limits, these
are set so the probability that a value would liesme those limits is very small, then
the degrees of freedom can be taken to be infilaglor & Kuyatt, 1994). If this
criterion is not met however, then a more elaboeatduation is needed, a description
of such a method is found in the GUM.

To further complicate and show that the use ofoéife degrees of freedom is an
approximate approach, the formula (4.4) gives istiant results if any quantities
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X, | D{LZ....n} for whichu; is the standard uncertainty, has mutual partsli{wjl

2008. The two quantitieg; andx, have mutual parts if both can be regarded as
intermediate quantities defined by their inputs #re have any input in common
(Willink, 2008).

Treating uncertainty in the form of standard uraiety is practical whilst working with
the uncertainty but it is not suitable entity facarate reporting. For a normal
distributed uncertainty, the expressiott u(x) constitutes a 68% confidence interval,
i.e. there is a 68% chance that the true valu¢lays within the intervak + u(x). But if
the uncertainty is represented by a uniform distidm, then the same interval would
hold 57.7% confidence. To make the result easiarterpret the GUM defines the
expanded uncertainty such ax = U(x) constitutes a 95% confidence interval. The
constant k such ds (x) = ku(x) is called the coverage factor.

Determining exact confidence-levels and coveragesfa for combined uncertainties is
difficult when the contributing uncertainties ongting from different distributions.
Especially since the information and knowledge alblo@ contributing uncertainties
most often are limited and based upon assumptidrerefore even a correct analytic
solution might be considered flawed. The practscdilition to this problem is to identify
the situations where the combined uncertainty'sifistion function can be
approximated by a normal distribution function.n@iskog, 2006)

The uncertainty distribution function can be appra¢ed by a normal distribution if
these criteria are fulfilled:

* A PVYis based upon a functional relationship witimput PVsX; and number
n is sufficiently large.

» Almost all uncertainties of the inputs are desatibg reasonably nice
distribution functions such as a normal or unifatistribution.

* The standard uncertainties from the type A andytpe B evaluations contribute
to the combined uncertainty in comparable amounts.

* The uncertainty contributions from the differerpunsX; can be considered
independent.

» There are enough effective degrees of freedag®(20).

The above defined criteria might seem strict batatually quite often satisfied.
(Lindskog, 2006)

4.3 Uncertainty in CO,-reporting

This section outlines some of the demands placatid¥zuropean Union and the
Swedish government on how activities must repairthreenhouse gas (GHG)
emission and in particular the carbon dioxide g3¥nission. These demands shall be
regarded as a minimum criterion. Methods for uraety calculations, proposed by this
thesis, must fulfill this criterion. Drawing regaments from the particular activity,
reporting of CQemission, is considered suitable since it's anviagtihat concerns all
Swedish process industries.

The document governing how GHG emissions must perted within the European
Union, is the European Union Commission decisiod72889/EG of the 18 July 2007.
The decision defines how monitoring and reportih@GBIG emissions in accordance
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with their directive 2003/87/EG of the 13 Octolwattoutlines the system for trade with
emission licenses.

The European Union Commission decision concerrepgnting of GHG emission has,
in Sweden, been implemented by Naturvardsverkedirtasult can be found in the
regulation NFS 2007:5. According 16 sin this regulation should:

All emission and utilization, included in the la2@04):1 199) concerning the trade of
emission allowance, shall be supervised. The sigiervshall be concluded by
calculations or by continuous measurements in @ dlas channél

But in 24 sthey’ve added way out for activities that would have a hard time
supervising according t5 §.It states that the activity might use an alterreativethod
for the supervision if the method specifiedisrgisn’t technically possible or involves
unreasonable cost3 he alternative method must be applied with astiesurveillance
level 1for almost all fuels/materials; the exceptionsfaeds/materials that contribute
very little to the total emission

A system where a model of the process is usedi¢talete the carbon dioxide emission
would fall under the category alternative methquisctfied in24 §.If an alternative
method is used, then a full uncertainty evaluatibthe emission value has to be
performed and the combined uncertainty has to bi@mihe limits, showed in Table 2,
for the corresponding type of activity

Max uncertainty in the
Typ of facility reported yearly CO
Emission
Category | +75%
Category Il £5.0%
Category llI +25 0%

Table 2 - max uncertainty in the reported CQ emission

4.3.1 The uncertainty evaluation

The first appendix of the NFS 2007:5 explicitlytewhat the uncertainty evaluation
must include. The activities must have knowledgeualhe uncertainty concerning the
equipment utilized to perform the measurements.adsessment of the equipment
should consider:

» The uncertainty for all components in the system.

» The uncertainty contributed by the calibrationamid of calibration of the
equipment used.
» Possible further uncertainty depending on how thémment is used in practice.

The uncertainty specified by the equipment’s sghall be used whenever possible.
A complete analysis of the equipment’s uncertamtist be performed if no such
specification is available. Calculations must ithbcases consider necessary

* Translated freely by the author

® To be more specific, it is those fuels/materiatt together accounts for 1000 tons or less of #itfas
carbon dioxide emission per year that can be erdeptiternatively a group of fuels/materials that
together represents less than 2%, up to a maxinf@@ 000 tons per year, of the facility’s total esion
® For a description of the categories, consult NBG725, the purpose of the table is to hint the ritade
of allowed uncertainties.
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corrections due to effects of the actual utilizatad the equipment. These effects can be
the result of calibration, the physical environmardund the equipment, the age of the
equipment or maintenance. (NFS 2007:5)

The reported uncertainty must be expressed as hinethuncertainty for all
components in the measurement system. Furthertih@@ncertainty must be
expressed as relative uncertainty, a percentageeoeported value at a confidence
level of 95%. (NFS 2007:5)

Calculations that combine sources of uncertaintgtrbe performed according to the
propagation law specified in several alternativerses, one of the sources being the
GUM’. The regulation provides an exact interpretatibthe propagation law, i.e.
specific formulas for the contemplated cases. Thesg@roducts and sums of mutually
uncorrelated uncertainties and their correlatechtmparts. The proposed formulas for
propagation of correlated sums and products asecohservative nature, they
correspond to the worst case scenario which ig pdkitively correlated variables.
Uncertainties should be regarded as correlatdebiktis any reason to suspect
correlations. For example, measurements that aréuoted by the same model of
sensors and in the same environment provide ré¢assuspect correlation. The four
formulas are summarized in Tablel3 &éndU.4 are the uncertainties expressed as
percentages at a 95 percent confidence level).

Independent sums U - JUX)Z+U,%,)2 +..+ (U, )

total —

%, + %, +o X
Dependent sums U _U,x) +U,X,) +..+U,X,)
total |X1+X2+....+Xn|
Independent products Uy = \/(lel)z +(U,%,)% +.. (U X,)?
Dependent products | U __ =(U,x) +(U,x,) +..+U,x,)

Table 3 — the formulas for propagation of uncertaities presented in NFS 2007:5

4.3.2 A more elaborate interpretation

The simplified formulas for calculating uncertairstypplied in NFS 2007:5 have both
advantages and disadvantages. An obvious advaistége simplicity of the
calculations. Their application becomes especsiityple if no considerable
modification has been done in the system duringithe period for which we are
interested in the uncertainty of the measuremé&aisexample, an activity that is about
to report of the yearly emission of GHG for a noadified system the uncertainty
calculation would consist of solving one equatidm equation being a combination of
the formulas in Table 3.

! Alt. ISO-5168:2005 Measurement of fluid flow — Pedtires for the evaluation of uncertainties
Annex A ofGood Practice Guidance and Uncertainty Management in National Greenhouse Gas
Inventories

annex A ofRevised 1996 IPCC Guidelines for National Greenhouse Gas Inventories
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The major disadvantage of this simplified approadie penalty the calculation
imposes on dependent variables in most cases,iabpsince the worst case scenario
is quite uncommon in reality.

NFS 2007:5 states that the calculations used shivldd more detailed than necessary.
The directive brings out the conservative propagelws, but a more detailed
approach can be argued necessary in some casesatat errors are severely
penalized and their tolerance limits are quite low.

NFS 2007:5 refers to several guides when statiagttte propagation law should be
used to combine uncertainties. But these guideknesot entirely consistent. For
example, the IPCC states implicitly that the ureiettes should be expressed as
percentages and thereafter combined as the seqparefrthe sum of squarés

A statement that all these guidelines have in commohat they bring out the option to
calculate the uncertainty by any method of chdicat being if the method is valid and
the reporting activity presents good documentatenmethods used. Monte Carlo
simulations are promoted as a suitable method by the IPCC and the GUM. (IPCC
1, 1996)

The sections above constitute some of the argunfi@nisore detailed methods than the
propagation law. The propagation law produces arecessary large uncertainty in
some scenarios, the presentation in NFS 2007 &mewhat flawed and the reference
cited by the directive all bring out more elabonatethods.

4.4 Propagating the uncertainty of averages

The methods presented in this chapter are normaéy to propagate uncertainties of
single measurements. Propagating uncertaintiegarages is an equivalent operation
and the methods can therefore be applied to cadcalaerages without modification.
The only requirement is that the PDs and the cpamging standard uncertainties
describe the uncertainty of averages values.

The uncertainty of the aggregation objects is @igpease of averaging. Theoretically,
if the uncertainty evaluation is completely exhawgstand all bias is eliminated by
corrections, then the uncertainty of the weighteetage could be calculated as:

u()?): nl Zn:ckzuz(xk) (4.5)

z Ci k=1

i=1

wherec; are the normalized weights. A more pragmatic agpgimovould stress that the
measurements errors described by uncertaintykely lio be autocorrelated. These
autocorrelations have been accounted for in NFS:Z0@tating that the uncertainties of
equivalently measured observations of a PV musbbesidered fully positively
correlated. This corresponds to the formula:

8 As long as none of the individual uncertainties greater that 60 percent of the sum of squara# of
individual uncertainties.
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u(X) == —— (4.6)

4.5 GUM framework algorithm

The theory presented in the sections 4.2 and fideaised to construct an algorithm
that propagates uncertainty between interconnexegponents in the system. One such
algorithm is outlined ifPropagating uncertainty in instrument systeoysB.D. Hall.

The basic algorithm presented in this sectionessémme as Hall's algorithm and his
work should be consulted for a more elaborate ptasen.

In section 4.2, a quantitysys was expressed as a functi?b’gg,S = fsys(Xi,----,Xn)

where the inputs also might consist of quantitieg tnight contribute some uncertainty.
This implicates the more general representation

x =) 4.7

where/\; is a set of input quantities, stating that eacingjty can be considered as a

composition of a set of simpler functions. Thisresgnts a recursive structure where
the inputs of the composite quanti§yalso can be stated on the form of equation (4.7).
The basic inputs or base cases of the recursiofovibeurepresented by the case where
A, is an empty set. For example:

Yeys = fsys(x1 ........ xﬁ): % (4.8)
can be rewritten as:

R @.9)
where

Xo = fo(Xg, Xg) = Xg + X (4.10)
Xio = flo(x7,x8) =X, = Xg (4.11)
and

X, = (%, %, )= XX, (4.12)
Xy = 4 (X5, %,) = X%, (4.13)
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The example illustrates how functions of severplis can be divided into a set of
simpler functions. It should be obvious from thisumple that this division into simpler
functions would allow for complicated formulas te talculated recursively by defining
as small set of basic functions.

This notation has a natural extension to handledainty. Let's first define a module.
A module mwould be an entity that consists of an output @&andx’s components
of uncertainty. A component of uncertainty is thensof products between each
uncertainty of the input and the components seitsitio that input.

of .
ui(Xj): Z —Lu(x,) j=1,....m (4.14)

These components of uncertainty must remain paeinetl on the inputs, i.e. the
components of uncertainty of the inputfx, ), x, OA; should not be evaluated nor

substituted with their numerical values. The indxu, (x, ) is meant to signify this
distinction between the standard uncertainty(of, ) which has an explicit value and
the component of uncertainty(x, ) that should be evaluated in regard to its context.

Combining modules into larger ones follow the satigeme as introduced above. The
modules being combined into a new module are toonsidered as inputs and the new
module is the output-variable. It's to provide thgportunity that the components of
uncertainty must remain parameterized at each reahd thereby account for all
correlation when evaluating the uncertainty forfinal output. Evaluating the
uncertainty for this final outpu§ consists of combining all the components of
uncertainty at the modulg as in the formula (4.1).

The discussion of linearity and the addition ofttlegorder terms of the Taylor series
apply here as well. In this particular presentattoa would consist of adding higher
order terms of the Taylor series to (4.14).

4.6 Monte Carlo

Another approach to calculating the uncertaintgneasurements is by Monte Carlo
simulations. The Monte Carlo methods can solve nudrtlge problems where the
assumptions of the GUM framework do not apply. d'so recommended as a tool for
validating the calculations made according to thiMSramework (Cox & Harris,
2003). Another advantage is that the results obat®l Carlo simulation provide more
information than that of a GUM framework calculatidhe Monte Carlo simulation
provides a discrete approximation of the probabdinsity function (PDF) whilst the
GUM framework calculation provides the standardiaiéan of some unknown PDF.

This increased amount of information can be usetbts of different purposes, some
aspects that are interesting to this work are:xactecoverage factor can be calculated
for symmetric PDFs, a confidence interval for asyetnu ditto and information is
gained on whether the output PDF has become skemgidsed due to correlations
(Papadopoulos 2001).
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This increased amount of information does of coumue with a price. The

convergence rate of Monte Carlo simulation is sloW? to be precise (L'Ecuyer,
2003). This has shown to be problematic for highetisional problems since both the
generation of pseudo-random numbers and solvingdhation consumes computation
time (L’Ecuyer, 2003).

4.6.1 MC theoretical description

A Monte Carlo (MC) method for evaluating the unaénty of a quantity = f(X)
where X is a vector of input variablXs= (Xl, ) S ,XN) consist of repeating the two
steps; adding random error terms to observed vali#® inputx = (xl, ) ST ,xN)

and thereafter calculating the randomized outguby the randomized observations. If
the random reor terms are drawn from the PDig (&) oio{12....,N} of the inputs

then the randomized outputs y will be observatioos the PDFg, (17) corresponding to

observations from the uncertainty of y’'s PDF whie £xpectation-value shifted by the un-
randomized output y. As the number of iterationtheftwo steps in the procedure goes to

infinity, the randomized outputs converge to amiterepresentation g;(n)

Interesting characteristics of the Monte Carlo rodtls that the functiorf might be
any mathematical function and that the Png:xis(Ei) might be any PDFs, the inputs can be
correlated and can even originate from the samévatihte PDF.

The number M of simulations carried out can bedjpaecided before the start of the
iteration, or halted by some stop condition for wiemough accuracy has been
achieved. Using a stop condition might be the niitgtive approach in uncertainty
evaluation. This stop condition can be based uffenexpectation value, standard
uncertainty or limits of the confidence intervaheke are all parameters of interest and
are therefore suitable candidates for the stopraaiit

An example of an adaptive method using stop camitiif the values , uy™),

Yiow' ™, Yhign" are calculated for eacH™teration, the index h signifies the number of N
iterations that has been performed. THe is the approximated expectation-value of
the last N iterations, uf})) is the approximation of the standard uncertainty" the
lower and yig" the higher limit of the approximated 95% confidesmerval. After
each N iterations (apart from the first), the an#tic mean of the intermediate values
y™ are calculated. The standard deviatipassociated with the arithmetic mean is
formed as a measure of degree to which the calonlhts stabilized. The counterparts
of the arithmetic mean and standard deviation aterchined for u(§’), yiow™ and

yhigh - Then if the largest of 2525,y 280w and 2snign is smaller than the degree of
accuracy needed in u(y) the calculation can berdegbas stabilized. (Cox & Hatrris,
2006)

The algorithm used for the MC simulations in thisri

While (The accuracy is not achieved or N <2){
Repeat M times{ _
Generate the vector Xfrom the inputs and sampling from the PDFs of thenputs

Evaluate the modely™*! = f(xj)
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}
1 &
Calculate the estimate of the output for the M iteations, y" = M—lz y’
“dij=1

M

. . _ 1 Y
Calculate the associated standard deviatios]' = \/M__lé(yj - y)

Update the overall §and s, by weighting in the values ofy" and s
Increment N

Sort the values j/ ] D{lZ, ..... ,NM}, in non-decreasing order, the sorted values then
represent a discrete representation of the approxiation of the output PDF.

The above algorithm outlines one particular MC iempéntation. The details can differ
a lot between implementations.

4.7 Quasi Monte Carlo

As previously mentioned an issue with MC simulasiggthe slow convergence rate.
This property has lead to the development of gESi{QMC) methods. In QMC the
pseudo-random numbers used in MC has been repigogdasi-random numbers. The
notation quasi-random numbers is somewhat mislgaakirthey are normally
deterministically distributed point sets and natdam at all but. If strictly quasi-
random numbers are used in a simulation it migklten a biased result. This can be
prevented by introducing random shifts betweenatgzbsimulations with the same
deterministically distributed point set.

4.7.1 Low discrepancy sequences

A design criterion of pseudo-random numbers is iy are uncorrelated, leading to
uncorrelated dimensions in the noise sets. Thenaksults in overlapping and
clustering of data points, leading to slow expliambf the space (L'Ecuyer, 2006). A
more efficient approach is to explore the spacerdanistically. The gain in efficiency
does come with a cost, as a deterministic explmmaif the space defies the founding
assumptions of the MC methods since it is assatiatth a deterministic error. To
acquire some of the efficiency of deterministictiifimition but to keep the required
randomness, predetermined sequences are usedritoutiissome points whereupon the
sequences receive a random shift on each dimetssionm the remaining points.

The most basic implementation can be describedlsvs: the predetermined
sequences are used to distribute N points in ahypiercube of same dimension as the
input dataset. The model is then evaluated foreidpoints. The points correspond to
the random errors of the models inputs and sinesetimight not be uniformly
distributed over the interveED,l), the inverse of their PDFs must be used to caleula

the sought value. Afterwards, another point frosgame unit-hypercube is drawn
randomly. The value of this point is added modyleabrdinate by coordinate, to each
of the N points to construct the next N points ttet be used to evaluate the model.
Since the shift is random in each dimension, theridinal points and the N points
generated will be uncorrelated and the methodheretore revived the randomness
that guarantees convergence to a non-biased value.
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4.7.2 Niederreiter Sequences

As mentioned above QMC methods use predetermirgeesees, more specifically
low-discrepancy sequences. The most commonly usedliscrepancy sequences are
the (t,s)-sequences, where s is the dimensioralityt can be regarded as a quality
measure of the sequence (Niederreiter, 1988). @heesce to be used here is a
Niederreiter sequence in base 2, chosen partlgrémtical reasons. The Niederreiter
sequence in base 2 have a better t-value tharothmonly cited Halton, Faure and
Sobol sequences (Niederreiter, 1988). But the Nieder-Xing sequences often
improves on the t-value of the Niederreiter seqaeéndase 2 (Dick & Niederreiter,
2008).

Does the use of the low discrepancy sequences ymphe convergence rate of the
standard MC method with pseudo-random numbers2érétical bound for the
convergence rate can be derived from the koksmakalanequality. It has been shown

that it's possible to create (t,s)-sequences w'clisarepancyD(Pn) (and also
convergence rate) of

o(p(R,) = o{'ogd ”j (4.15)

where R is a sequence of length n and dimension d (Niederr 1988). Many common
sequences such as Halton, Faure, Sobol and Nigdede converge at this rate. Their
convergence rates differ by a constant and theesegs are presented in an order of

decreasing size for this constant (Niederreite88)9 These convergence rates beats

the O(n'%) of standard MC methods asymptotically (L’Ecuyed0@). But the

dimensionality has a large impact on the convergeate of QMC-methods for more
practical values of N. If Nc 10°then the theoretical convergence rate of QMC hiats
of MC only for low dimensionalities, the breakpoistabout 7 or 8 (L'Ecuyer, 2006).

Fortunately, the theoretical bound on the convergeates doesn't fully reflect the
practical aspects of the methods. QMC has sucdisk&en shown to beat MC for
problems with over 1000 dimensions (L'Ecuyer, 2008)is can to a large extent be
explained by the notion of effective dimensiondeEfive dimension can in general
terms be described as the number of dimensionedded:xpress the functidn More

distinct definitions are based on the sense thetifum f can be said to have effective
dimension s. For example,f is said to have effective dimension s in the sppgition
sense iff is well approximated by a sum of s dimensionatfioms (Owen, 2002). Put
in more common terms; if is a function of n variables that can be well apprated

°Let f be the function from the inputs to the outguitbe the expectation-value of output angtt@
Monte Carlo estimator fog/ . Then consider the Banach spdeeof functions, wherer - ,u|| measures
the variability of f and D(Pn) is a measure of the discrepancy of the point gelf FD(Pn) is chosen
sothat|Q, — 4 <|f - ,u||D(Pn) holds for allf T F , then the error will converge at least as fast as
D(P, ) if the variability of f is bounded (L'Ecuyer, 2006).
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by a function of/2 variables, therf is said to have an effective dimension. For more
strict definitions and descriptions see the refegesn
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5 Using a process model to improve/replace

variables

If multiple measurements are available for a P\ tten be combined to improve the
accuracy of the estimate and thereby lower thentaiogy (Kessel, Berglund &

Wellum, 2008. In this system, multiple measurements would arefidifferent ways

of evaluating the PV. For example, the value o¥/afPmight be measured directly by a
sensor and calculated from sensors measuring BWerCalculation from sensors
measuring other PVs is possible in the presenca nobdel that specifies their physical
relationship with A. Two issues concerning the osmultiple measurements will be
addressed below. Firstly, under what conditionsteanor more approximate value
sources of a PV be combined to improve accuracg@rigity, how should the values be
combined to provide the lowest uncertainty?

5.1 Consistency

Averaging of several complete measurements of adbe used to achieve a better
accuracy. The term complete measurement aimstatglisshing these replicated
measurements consisting of evaluations for bothevahd uncertainty from the type A
evaluations that can be used to evaluate the @nerfor their average (Kessel,
Berglund & Wellum,2008)

This can be illustrated by an example using the Giyidroach to uncertainty described
above. LetY be the arithmetic average of the two normallyriisted variable; and
X, then the expanded uncertaintyYofaccording to (4.1), will be:

A G AN A N CSE 1

wherek is the coverage factor. kfis chosen as 2 theriU (Y) is a confidence interval
at approximately 95 percent confidence levek;#100andx,=80 are observations of
X1 andXz with u(x)=u(x2)=1, theny = ix, +1x,=90 constitutes an observation 6f
with the expanded uncertainty:

u(y):z\/uzixl)+”22X2)+”(X12’X2) =2 (5.2)

for the observations,, x, with a coverage factd=2. The large differences between the
measurements in the example, together with thkitively small uncertainties raise the
guestion whether they can be considered to be gpptbximations of the same
physical quantity. If the probability is 0.95 thhe true values of;,X; andY lie within
their respective confidence interval, shouldn’sténtervals be almost the same or at
least overlap?

The scenario in the example wouldn’t occur if alasaurements had been conducted
successfully, all the uncertainties associates thithmeasurements had been identified
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and all calculations on the results of the measargswere based on exact
relationships.

But a system, built after the ideas presented leckides lots of assumptions that may
be invalid. The concept of consistent measuremeitittherefore be used to test these
assumptions and improve the accuracy in valueleoPVs.

Measurements are said to be inconsistent if thdteesf multiple replicates of the same
measurement are not equivalent. One way of vedfylre consistency is therefore to
perform an equivalence test. The test is to chiecleachy; in the weighted sum:

Y=>rcY (5.3)

that the relationshii)(i —\7| <k m(\(i —\7) hold. A coverage factde= 2 corresponds

approximately to a 95% confidence level if all strg of uncertainty are normal
distributed. (Kessel, Berglund & WellurB008)

The exact value of the coverage factor for diffe@mfidence levels probably won't be
known unless all input uncertainties are normatitgted. But the coverage factor of
the normal distribution can be used as an apprdeivedue of the coverage factor for
most combined uncertainties (Kessel, Berglund &I\We) 2008) However, if the
approximate value of the coverage factor is usekowt regard to the specific inputs, it
lowers the quality of the test since it changescthreesponding confidence level. This
approximate approach of handling the coverage faglbbe used in lack of better
options.

If the consistency check fails then the measuréalitated values cannot be combined
to produce a more reliable value for the processbke (Kessel, Berglund & Wellum,
2008) Two options are available to produce a relialaliei®; removing values from the
combination according to some reliability-criteoiaby manipulating the values into
being consistent.

The later alternative would consist of penalizihg tincertainty of the measurements.
One way of achieving this is to add small termgayb mean noise with equal variance
to each measurement. Thereafter check for consiseagain and if the measurements
still are not consistent, then the procedure carepeated until they are. (Kessel,
Berglund & Wellum,2008)

5.2 Weighting

If different complete measurements can be combioéawer the uncertainty in the
approximation of a PV, then how should these measents be combined to produce
the best possible result?

Fusion methods, methods for combining sourceshese higher performance than of
the individual sources have been studied for cexgu©bviously the problem is easily

solved if all error distributions and their corradas are known, but this is often not the
case. Early fusion rules assumed independence &etiie sensors errors whereas the
problem becomes simplified. Other fusion rulesdaeypending on this assumption have
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been developed. For example, Rao providagemeric sensor fusion problem:
classification and function estimati@nmethod, not based upon the assumption of
independence, but using data from several samiites, 2004)

The problem of combining different measurementgrtmluce the most accurate value
of a PV corresponds to find the best weighter the weighted sum df variables:

Y = Zci X, (5.3)
where
ZN:cI =1 (5.4)

The optimal weights would normally be the ones thatimizeu(Y)and thereby
produce the most accurate valueroBut the problem is harder in this case since the
values of the process variables are required tmhsistent, the full optimization
problem is to find, if they exist, the weights tinaihimizes the objective function in
(5.5).

Min u(Y)
Y :icixi
i=1
0<c <1 OiO(12..,N) (5.5)
ici =1
i=1

X, -Y|<2m(X, -Y)

Solving (5.5) for each process variable at eacle timerval would be too
computationally heavy; it's a nonlinear optimizatiproblem that can include a large
number of variables.

An alternative approach, promoted by Lindskog (30@®uld be to weight according
to the uncertainties assuming mutual independélrtae.method might not produce the
optimal weights but allow for the weights to begwoed with only few elementary
arithmetic operations per component of uncertaifibe standard uncertainty for the
outputY, calculated according to (4.1) with zero correlatiis:

=3 2] wix) 59

i=l
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for inputsX; with uncorrelated uncertainties. If the outpis a sum weighted by a

normalized set of weights, such as:

i=l
then
2
L _w(x)
Lui(y)

(5.7)

(5.8)

are the normalized weights that minimize the urdety inY (Lindskog, 2006). But for
inputsX; that are to be combined into a process varialdeetts also the notion of
consistency. The weights can only be used if thpuiyproduced is consistent with the
inputs. This will be handled by checking the cotesisy and if the test fails, then throw

away the most uncertain input and thereafter retate weights and redo the

consistency check. A small test and illustratiothef consistency check and weighting

is presented in section 7.2.
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6 Test case and Implementation

6.1 The java implementation

A small java based application was created totithis the definitions above and to
evaluate some of the proposed methods. The tinrecdghis project didn’t allow for
the development of a full blown system based uperideas presented above. A test
application that allows for an assessment of tleerainty evaluation methods and
combination of consistent measurements seemedRuita

6.1.1 Basic description

The input of the application is limited comparedattull blown system; it takes a XML-
document as input rather that continuously produsettime averages. The XML-
document must specify an expression consistingooinabination of any number of
inputs and the values for the inputs. The combamatnust consist of the basic
operations specified in the section with the saaraen These inputs are converted a
tree structure that corresponds to the expressuhjng is stored and all test and
evaluation are performed on the tree structure.

A large part of the application consists of an obfmlled Variable and its subobjects.
These are used to construct the tree structureaned above, thus acting as both
memory and supplier of rules for how the struciarevaluated. The object hierarchy is
shown in Figure 4.

Variable

DerivedMeter

SubNode DivNode

Figure 4 - the object hierarchy

6.1.2 The Monte Carlo implementation

This section aims to clarify the implementatiortttd MC methods, to show how the
results in the uncertainty evaluation below wertaimied. The evaluation of the MC
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methods uses the tree structure but the methodsstiees are implemented in the class
Monte Carlo that can be found in appendix C. Théeds included to represent the
exact structure of the algorithms and won't be axm@d further. Three important details
in the implementation that aren’t explained by ¢bee is the pseudo-random number
generator, the Niederreiter sequence generatiothengndom multivariate normal
distribution generator. They are described in tiizssequent sections.

6.1.2.1 Random number generator

The generation of pseudo random numbers is a ¢paiaof MC-simulations and there
are differences between different generators. Mdrie commonly used random
number generators fail to show satisfying randoranes

Mersenne Twister algorithm was used for the germratf pseudo random numbers.
This particular implementation was provided as & pbthe Math-uncommons library
(Uncommons Maths).

The generator has a prime period 5Y2-1 and occupies a working area of 624 words
(As a comparison, the rand-function has a periogfand use a working area of 1
word)'°. It generates numbers as fast as most modernajereeand is almost as fast as
the rand-generator included in java. It has afems promising statistical properties
and passed several tests including Marsaglias digbat. (Matsumoto & Nishimura,
1998)

Tests were performed to ensure that the large workiea of the Mersenne Twister
didn’t affect the computational time in this paudi@r implementation. The tests
concluded that the time consumed by the Mersenrist@mgenerator was
approximately equal to the time needed by ranceteegate the same amount of
numbers, regardless of the magnitude of that amdiortdid the larger working space
affect the computational time needed to perform $if@ulations.

6.1.2.3 Generation of Niederreiter sequences

This functionality is supplied by a library call&$J developed at the Département
d’Informatique et de Recherche Opérationnellehatniversité de Montréal (designed
and supervised by Pierre L’'Ecuyer). The Niederresgguence in base 2 is
implemented in a class namileéedSequenceBasePbhe class allows the parameters of
the sequence to be specified; the number of poirttee sequence, the number of output
digits and the dimension. (SSJ API Specification)

6.1.2.2 Random Multivariate normal distribution generator

Another difficult part of the Monte Carlo is thetersion from pseudo random number
generation to generation of correlated pseudo ranaambers. This functionality is
also supplied by the SSJ library. The class usékisnmplementation uses a method
based on Cholesky decomposition of the covariaretgixnThe decomposition is
defined as = AA' whereZ is the covariance matrix arfdis a lower-triangular matrix.
Observations of the multivariate normal distribotaefined byX and the expectation
vectoru can be calculated a&=u + AZ, whereZ is a vector of independent standard
normal distributed variables. The class uses agreat source for the generation of the

0 The working area can be regarded as a non-spetyfe of memory and a word is a number of bytes
that a processor considers as a unit of data. Héme@ormal wordsize today would be 32 bits.
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vectorZ, the methods for number generation presenteckisdbtion above are used for
this purpose. (SSJ API Specification)

6.2 The test cases

Three different cases were used to verify the imgletation and to test the proposed
methods. They serve different purposes and haveftite been selected by different
criterions. The first denoted M1 is a small ficmodel which is simple enough for
the value and uncertainty to be verified manudllglso serves as a contrast to the
much larger model M2 in the evaluation of methamdsalculate the uncertainties in the
values.

These models can be illustrated as trees wherergaitghis an object from the hierarchy
presented in Figure 4. M1 is illustrated in FigGrehe left tree represents the structure
of the model and the right illustrates the valuesvary node after evaluation. The

inputs numerical values presented in the figureuassl for every test that involves M1.

0 -800

Figure 5 - lllustrations of M1

The second case M2 is a model of a real Swedistepsoindustry’s C@emission into
the atmosphere. It serves the purpose of testingthe method for propagating
measurement uncertainty handles models that indudege number of inputs and
operations. Table 4 shows the exact number of iapdtoperations in M2. This is
presented as a table instead of a tree structm@ysbecause the model is too large.
The number nodes can be regarded as an approxindite trees size; the number of
nodes are equal to the sum of all occurrencesliteTg except the roRVs
corresponding to the dimensionality of the modEhe data used for the evaluation of
this model is average values from one hour of petidn, the specific hour was chosen
at random.
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Node type Nr. of occurrences

Constants 184
PVs 102
Occurrences of PVs 302
Sum 249
Sub 10
Mul 240
Div 41

Table 4 - Occurrences of node types in M2

The last test case M3 is a small model that isuohedl to illustrate combination of
consistent measured values. The specific model sedwas not chosen on any
specific criteria except that it was two small misdef the same physical quantity. The
values used in the evaluation are the 24 hourlyames that constitute a day of
production. M3 is illustrated in Figure 6 below.

Figure 6 - illustration of M3
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7 Results

7.1 Uncertainty

The three different methods for automatic evalumtibmeasurement uncertainty were
tested with the two test models M1 and M2. The destes two purposes in the
selection process of suitable method to handlertaiogy. The first purpose is to verify
that the methods provide reasonable and correspgaiswers in, at least, these
particular cases. The second is to provide a hmritaw fast the different methods are
and if they might be fast enough to be used far plirpose.

The stop condition used in the MC algorithms isgolagnly on the relative

improvement in the value and standard deviatiom aw&eries of iterations. Note that
other stop conditions have been proposed and tiditcans presented in the theoretical
section about uncertainty also incorporate thedstechuncertainty, upper and lower
limits of the confidence interval. A rather largenmber of iterations are run before and
between each time the stop condition is checkeis. iStsupposed to reinforce the
credibility of the stop condition by reducing thepability that the method stops after
only a few “lucky” numbers. The stop condition isrified after each multiple of 1000
iterations for the standard MC method, 8192 fordimeulation of M2 with QMC

method and 1024 for M1s QMC simulation. There $oal limit to the maximum
number of iterations before the simulation is sexppnd considered nonconvergent.
This limit was set to 100000 for the standard M@ #re multiple below 100000 for the
QMC simulations. Longer runs will show to servéldipurpose since the computational
time would be too long and this particular impletagion and the test computer limits
the number of data points to slightly above 100 @06 to the restricted amount of
available memory. The relative improvement in thkie and standard deviation is
calculated as the difference between value/stardiaridition calculated using all
iterations performed and the value/standard dewiatalculated at the last verification
of the stop criteria (hence the improvement gaingianother n iterations, n being
1000, 8192 or 1024 as described above). This ingmmant will be referred to as
accuracy in the results below, thus the accuraouldibe interpreted as a relative rather
than absolute measure, describing how far the ctatipn has converged. A statement
of the accuracy in absolute terms and more elabatap conditions is desirable for real
applications of MC methods but serves little pugpfis these tests.

An uncertainty was assigned to all PV that corregisdo basic measurements in the
models (denoted inputs in section 5.2). These taicgies were normal distributed and
with a standard deviation set to one percent oféspective measurements value.
Strictly normal distributed uncertainties were uf@uho other reason than to facilitate
the implementation of these tests. An extensiah@fapplication to include
uncertainties identified by the type B method sHaiilchange the results drastically
and wouldn’t pose any problems to implenténit would be possible to extend the
application to handle uncertainties described bya@mtinuous probability distribution
(Cox & Harris, 2006). The covariance between thfedint uncertainties was specified
by the correlation matrix in Figure 7. Additionakults for M2 were produced for

1 Since the implementation is based upon the gdnaraf pseudo- and quasi-random numbers where
upon the inverse of the probability density funetie used to calculate the normal distributed numbe
So all that is needed to make the algorithms supgtber probability distributions is to implemehet
inverse of their probability density functions.
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completely uncorrelated uncertainties, e.g. a dasae matrix with the diagonal
consisting of the uncertainties variances andthkioelements set to zero. Most of the
results were produced with correlated inputs sihcenstitutes a more interesting case
where the output PDF might become asymmetric aaskli.

1 05 0 - - - 0O
05 1 05 :
0 - .

. . 0
: 05 1 05
|0 - - .. 0 05 1|

Figure 7 — the correlation matrix

7.1.1 Time and uncertainty for M1

Results of the GUM algorithm for M1

Calculated value -800
Standard uncertainty 9.55249
Time to evaluate the uncertainty 10 (ms)

Table 5- results of the GUM algorithm for M1

Tables 5-7 show that the uncertainties calculajethé three methods were about
equat? and this result was concluded by a manual evalnafiheir estimation of the
value followed the same pattern. The largest ditbn is a slight difference found in
the third significant digits of the standard unaeties. Errors of this magnitude can be
expected whit the stop conditions used and woulith&ignificant in practical
applications since measurement uncertainty is garoapnate concept.

Table 7 shows that the standard MC method convéogebe lowest accuracy,
converges sometimes for the mean but not for thledst. It also shows expected
characteristics over most of the properties. Theremgence rate cannot be fully
evaluated due to the minimum and maximum constairthe number of iterations.

The theoretical convergence ratenis’ implying that a 100 times more iterations are
needed to improve the accuracy by one decimalra@$dts in Table 7 don't fully
comply with the theory. The difference betweenlatiee accuracy of four and five
decimals is only 3-4 times the number of iteratioftse highest accuracy doesn’t
provide any further information on this clash begweheory and practice since it didn't
converge within the maximum number of iterations.

The result of the QMC simulations doesn’t follove ttame pattern as those of standard
MC. The simulations converged within the maximunmiver of iterations every single
run for the two lower requirements on the accurny sometimes for the highest.
Table 6 show that the average number of iterati@esled to converge was slightly
more than doubled from the lowest to the middleugacy. No such relationship can be

12 All values are rounded to five decimals
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deduced between the middle and highest accuractodhe non-convergence of some
of the trials with the highest accuracy.

The difference in computational time between the methods was negligible. Both
methods completed the simulations for the lowestigxies in approximately one
fourth of a second and the highest in one secdmi¢th some runs stopped at the
maximum number of iterations). The GUM frameworgalthm was much faster than

the two MC methods; the computational time requiked only 10 ms.

M1 computed with QMC

Required accuracy 10"-6 101"-5 10n-4
Converged Sometimes Yes Yes
Value -799.99997 -799.99637 -799.99622
Standard uncertainty 9.55276 9.55274 9.55363
Coverage factor 1.959275 1.96228 1.96187
Skewness -0.13437 -0.123097 -0.11723
Value error 2.06157E-5 0.00362 0.00378
Time elapsed while iterating 736.1 (ms) 489.4 (ms) 199.8 (ms)
Time elapsed while sorting 110.0 (ms) 63.0 (ms) 018ns)
Number of iterations 79462 52428 21299

asymmetry.

Table 6 — Results of QMC for M1

The numerical values for the coverage factor foumn@ables 6 and 7 correspond well to
the coverage factor of a normal distributed vagablowever, the numerical value of
the coverage factor is calculated under the assamtitat the PDF of the uncertainty is
symmetric. Some information about the symmetnhefdistribution can be deduced
from the skewness, the calculated skewness caaffifor these simulations are all
between 0.10-0.15. An approximate test for symmistty compare the skewness to the
standard error of skewné3¢SES), skewness greater than two times the SHSates

M1 computed with MC

Required accuracy 10"-6 1075 1074
Converged No Sometimes Yes
Value -799.99724 -799.98250 -800.00905
standard deviation 9.54547 9.56298 9.57205
Coverage factor 1.95997 1.95948 1.96333
Skewness -0.14689 -0.12817 -0.14627
Value error 0.00276 0.01749 -0.0090
Time elapsed while iterating 1006.0 (ms) 727.4 (ms) 201.7 (ms)
Time elapsed while sorting 115.8 (ms) 82.7 (ms) 01ms)
Number of iterations 100000 72900 19700

Table 7 - Results of MC for M1

13 Skewness coefficientsin be considered significant if their absoluteiealargreater
or equal to 2 times the standard errors for skes(T@bachnick & Fidell, 1996). The

standard error for skewness (SES) can be calcuest&ES = ()"



The greatest SES for these simulations is 0.017alitkde uncertainty PDFs should
therefore be considered asymmetric. But how daessagymmetry affect the results?
The Monte Carlo methods allow numerical computatiboonfidence interval and
these proved to be fairly symmetric in this patacicase.

7.1.2 Time and uncertainty for M2

Results of the GUM algorithm for M2

Calculated Value 196.77797
Standard uncertainty 1.679746
Time to evaluate uncertainty 50 (ms)

Table 8 — Results of the GUM algorithm for M2

The results of the MC simulations of M2 are preedrih the Tables 9 and 10. The three
levels of accuracy required were lowered by a digé to increased dimensionality. Not
much can be deduced from the numerical value op#nameters; value, standard
deviation and coverage factor. There is slightedé@hce on the third decimal, as in the
simulations of M1.

The iterations consumed by standard MC to simtevere fairly consistent with
results received while applying the same methddloThree times the iterations were
required to improve the accuracy by one decimag rEsults of QMC for M2 presented
here were gained using a longer sequence thae iretlult on M1 above. This is simply
because the longer sequence generated much lestitéisrin terms of consistency
between runs. QMC succeeded to converge some abthwals for the lowest and
middle accuracy.

The successful trials of the standard MC methddsstow a large weakness: the
computational time. About 5, 13 and 42 secondpeetsvely were needed to arrive at
the specified levels of accuracy. The GUM algorittmmpleted the task in 50 ms
which is rather significantly lower than 42 s.

The skewness of the uncertainty PDF is smaller Mais equivalent. A quick
verification of the SES provides varying resulteeTSES for the simulation with lowest
accuracy is about 0.028 and the PDF could therdfereonsidered symmetric. The
simulations requiring the highest accuracy had 8 Siout 0.01 implying that the PDF
is asymmetric. The numerically calculated confidemtervals, as in the simulations of
M1, were practically symmetric.
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Results of MC for M2

Required Accuracy 10n-5 10n-4 107-3
Converged Yes Yes Yes
Value 196.77585 196.77009 196.77553
Standard deviation 1.67773 1.68042 1.68222
Coverage factor 1.95951 1.95818 1.95990
Skewness 0.03224 0.05163 0.03921
value error -0.00211 -0.00787 -0.00243
Time elapsed while iterating 42142.3 (ms) 1288m6)( 4859.8 (ms)
Time elapsed while sorting 140.0 (ms) 20.1 (ms) (BS)
Number of iterations 69300 21900 8000
Table 9 - Results of MC for M2
Results of QMC for M2
Required Accuracy 1075 1074 1073
Converged No rarely Rarely
Value 196.77409 196.77421 196.77422
standard deviation 1.66945 1.67440 1.67667
Coverage factor 1.95966 1.96095 1.96245
Skewness 0.04029 0.04568 0.04064
value error -0.00387 -0.00377 -0.00367
Time elapsed while iterating 58438.3 (ms) 5436m8)( 53952.6 (ms)
Time elapsed while sorting 144.6 (ms) 126.6 (ms) 0.0Zms)
Number of iterations 98304 95027 91750

Table 10 - Result of QMC for M2

Table 11 presents simulations of M2 whereas themainties in the inputs were
considered completely uncorrelated (i.e. the cati@h matrix was set to the identity
matrix with a dimensionality equal to the numbebasic inputs). These results are
provided to show that the number of iterations eele@ind computational time
consumed remain approximately the same for un@igelinput uncertainties. The
results show nothing remarkable, the skewness prea@ be explained by several of
the inputs reoccurring in the model. The approxereuality in computational time
consumed using correlated and uncorrelated inpotsdes reason to believe that the
random multivariate normal distribution generatsed can operate approximately at
the same speed regardless of the provided cooelatatrix structure. This is important
since profilind* reveal that over 90 percent of the computaticinzs tonsumed by
simulations was spent by the multivariate normsatriiution generator. A comparison
between the simulations with correlated and untated input does also indicate that
the method used to correlate the inputs didn’tugarthe discrepancy of the Niederreiter

sequences.

4 Cconducted with the profiler incorporated in NetBeaDE 6.1
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Results of MC & QMC of M1 with Uncorrelated Uncertdes and
accuracy 18

Method MC QMC
Converged Yes Sometimes
Value 196.77072 196.77704
standard deviation 1.43967 1.44959
Coverage factor 1.97407 1.95717
Skewness 0.01989 0.02825
Value error -2.85995E-4 9.31199E-4
Time elapsed while iterating 4676.1 (ms) 56014.6)(m
Time elapsed while sorting 7.0 (ms) 130.9 (ms)
Number of iterations 7400 91750

Table 11 - Results of MC & QMC of M1 with Uncorrelaed Uncertainties and accuracy 10-3

7.1.3 Discussion of the uncertainty results

All three methods can obviously be used to appraxinthe value of a process variable
and the uncertainty in that value. The approxinmatibthe value coincides over the first
four significant digits. Four digits should be aptable in most practical applications
even though a higher accuracy might be desiredatharacy in absolute terms is
difficult to estimate but the values of Table 5 @are exact.

The accuracy in the standard uncertainty is a bise, only two significant digits
coinciding. Two digits might not look like much bitis a satisfying result since it
implies that all three methods successfully evalddbe standard uncertainty. And two
significant digits are usually enough since the Mtpyocedure of identifying sources of
uncertainty is of an approximate nature.

Another interesting result is the number of itemasi needed to satisfy the stop
condition. The results of the standard MC methoeisdieviate from the theoretical
bounds, the results indicate a much faster connesgeate. The QMC doesn’t improve
on the convergence rate of standard MC. The exanstergence rate of the QMC
simulations is clouded by the minimum and maximumtétions, but the performance
is worse than standard MC for the M2 and betteMar The difference in performance
on M1 was small, QMC requires slightly fewer itéwas. The difference in
performance on M2 was much more significant. Thadard MC performed better than
expected whereas QMC rarely succeeded to convdatehe maximum number of
iterations. Whether QMC'’s failure for M2 is a rasoi the problem having high
effective dimensionality or if there is a mismabmtween this specific implementation
and the problems, cannot be deduced from thede. t@&MC would be unsuitable as a
general method for uncertainty evaluations if thd performance can be explained by
the problem having high effective dimension (siM2is a veritable model were the
uncertainty is of interest). This study providessapport for QMC as an effective
general method for propagating uncertainty, regasibf the explanation.

Closely coupled with the number of iterations nektteachieve certain accuracy is the
time consumed by the calculation. This time mea®mur'é a generalizable result for the
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methods; it depends on loads of different factachsas the technologies used in the
implementation and the specific computer used. Nliemethods needed
approximately five seconds to complete 8000 iteration a large model. This indicates
that the methods probably would be too slow foir@implementations of automatic
uncertainty evaluation. The time consumed by thé&/Gllgorithm is negligible in
comparison and seems to be a more suiting optioorfine implementations of
automatic uncertainty evaluations.

The trials above focused mainly on how fast thehmds completed the task of
propagating the uncertainty through a model. Tlaege as mentioned in the chapter
named uncertainty, other aspects to regard. A eonfptxamples, briefly treated in the
tests, are the coverage factor and symmetry. @tkemples are nonlinearity in models,
scale vs. frequency and the volatility of the syst&@he GUM algorithm has to treat
non-linearity by approximations and rely on assuam for the coverage factor and
symmetry. The specifications in chapter 2 and 3=dito be as general as possible, but
the system and processes using automatic measursys¢éem have variant
characteristics. Even the GUM algorithm might be $tow for a very large system
(scale) requiring a short unit time (frequent). t8gs with varying ways (volatility) to
evaluate each PV might have greater use for autormadl frequent uncertainty
evaluation.

An alternative or complement to automatic uncetya@valuation with the GUM
algorithm would be an offline tool that does thaleration on demand. The time
consumed by the MC methods to achieve sufficieatiary does allow for usage of
such tools. An offline MC tools could also be usedalidate the calculations and
assumptions made in online evaluation with the Glddthod. Such a tool could be
used to verify sufficiently often that the standarttertainty has been correctly
evaluated. But it could also be used to calculateverage factor and the symmetry of
the PDF. For example, if a coverage factor is dated every twentieth unit time
average and remains close to constant over tirea,ttiat coverage factor could be
assumed valid for unit time averages within thernvel where the coverage factor
remained almost constant.

7.2 Result of weighting

M3 was used in order to verify and get some prattense of consistency checking
and accuracy gain by combining measurement rejuiessmodel was chosen because it
is an actual case of where there are two waysaltiation a PV and yet simple enough
for the results to be interpretable.

A normal distributed uncertainty was added to aaelasured result, just as in the
evaluation of uncertainty methods above. The stahdeaviations of these uncertainties
were defined relatively to the magnitude of theegponding measured result. Test
were performed at three levels of the uncertairgiasdard deviations; 1, 1.5 and 2
percent of corresponding measured result (in thépter the standard deviation of the
uncertainties will be specified in percentages,chtis to be read as percentages of the
corresponding measured result), to illustrate tmaroon effect of implementing both
consistency checking and weighted averaging. héé levels of the standard deviation
were run for the uncertainties set to be uncomdlabut also correlated according to the
correlation matrix in fig 7 from the evaluationwicertainty methods.

The results are presented in the Tables 12 ancob3partmentalized on whether the
uncertainties were considered correlated or nat. Mimbers shown are mean values of
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24 different sets of measured values; each se¢septs the average over one hour, so
together the mean values presented representsdhaga for a day of production
(rounded to two decimals precision). The column enmdiicates how the value was
evaluated; vl means that the value was taken ftbm M3, v2 as with v1, average that
the value is the arithmetic average of the inpots@ptimal is the optimal weighting
described in chapter Blr of consistenis the column that denotes how many of the
hourly averages passed the consistency test. Ebrreaur where the consistency test
failed, the average or optimal value was replacigd the most accurate value of V1 or
V2.

Perhaps the most obvious result of the tests tauth@ertainties with a standard
deviation of one percent did not result in any cstesit measurements whereas almost
all measurements when the standard deviation wde 8&0 percent of the
measurements value passed the consistency chaskeshlt is, unfortunately, only
valid in this particular case and doesn’t allow oy general conclusions to be drawn.

It can be deduced from Table 12 that uncorrelatpdtiuncertainties with a standard
deviation of 1.5 percent gave a total uncertairity.®7 percent of the value using the
average method and 1.38 percent using the optiratiiad. In comparison with the best
of the two basic values, v2 with a standard unagstaf 1.5 percent, these methods
improved standard deviation of the uncertaintie®yespectively 12 percent. For
input uncertainties with a standard uncertaint? percent; the average method resulted
in a standard uncertainty of 1.48 percent and fienal method 1.51 percent. So even
in this case where the optimal method actually peced optimal weights due to the
non-existing correlation, the method didn’t succeegroduce an optimal result. Even a
simple arithmetic average provided better ressitaply because more of the 24 hour
averages could be considered consistent.

All the weights generated by the optimal methoden@66+0.02 for vliand 0.44+0.02
for v2, i.e. no weight deviated more than 0.08 frthhe 0.5-weighting used by the
average method. Hence the difference in the rgsited from the two methods for an
hour where the measured values were found consisteald be small.

Weighting results for uncorrelated uncertainties

Uncertainty level Mode Nr_of Value Standard uncertainty
consistent

1 procent Actual 0 152.80 1.66
Pred 0 146.40 1.46
Average 0 146.40 1.46
Optimal 0 146.40 1.46

1,5 procent Actual 0 152.80 2.49
Pred 0 146.40 212
Average 14 148.12 1.88
Optimal 7 147.08 2.03

2 procent Actual 0 152.80 3.31
Pred 0 146.40 2.92
Average 24 149.60 221
Optimal 22 148.91 2.25

Table 12 -Weighting results for uncorrelated uncerainties

The results changed slightly when correlations vigtreduced into the tests. The
correlation matrix used in the uncertainty test vesycled and used to define the
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structure and magnitude of the correlations. A cangon between the uncertainties in
Tables 12 and 13 show that the total uncertaintylahcreased due to these
correlations whilst that of v2 remained unchandedan also be read from Table 13
that using the arithmetic average still outperfothesoptimal weights which now only
showed seven consistent hour averages. But alsgfféetiveness of the arithmetic
average method was severely penalized by the atioes$, the improvement in
standard uncertainty was only 0.08 percent in cospa with the best simple value v2,
this with a standard deviation of the basic undetitss at 2 percent.

Weighting results for correlated uncertainties

Uncertainty level Mode Nr of Value Standard uncertainty
consistent

1 procent Actual 0 152.80 1.94
Pred 0 146.40 1.46
Average 0 146.40 1.46
Optimal 0 146.40 1.46

1,5 procent Actual 0 152.80 2.90
Pred 0 146.40 2.20
Average 7 147.17 2.18
Optimal 0 146.40 2.20

2 procent Actual 0 152.80 3.87
Pred 0 146.40 2.93
Average 22 149.27 2.85
Optimal 7 146.97 2.87

Table 13 - Weighting results for correlated uncertanties

7.2.1 Discussion of weighting

The absolute results presented in Tables 12 amarii3ot be generalized, but they show
that the methods can be used successfully. Themaiccuracy was quite small in
several cases but better for the largest uncedainthese larger uncertainties could be
argued to constitute a more realistic case siflagga proportion of those hourly
averages could be considered consistent. Successiultaneous measurements of the
same physical quantity should be consistent, sescagh few consistent hourly
averages should be considered less realistic oeadizations where one measurement
failed.

The better results of average method than of thienapmethod can also be explained
by the by trueness of the case, the optimal metmdd, of course, produce better
results for uncorrelated uncertainties where athsneements could be considered
consistent. So the optimal method would producebtfe results in a fine tuned reliable
system even if the results above display the opgposi

The lessons learned from the experiment is thabawing consistent measurements is
indeed useful for the calculation of trustworthyues of process variables and that the
choice of method for producing the weights mighteted slightly on the particular
system. The optimal method should be preferrednfost sufficiently fine tuned reliable
systems, but as the quality declines and not adlsmements can be considered
consistent for the optimal method, then the usdigleeoaverage method might produce
better results.

55



8 Concluding discussion

The purpose of constructing a system that opewates/erages is to lower the amount
of data that needs to be stored and processednifitieit aim was to specify methods
that allowed averaging over large time periods didd’t require extensive knowledge
or dubious assumptions. Two attributes were intceduo tackle these issues;
confidence and active time. The active time allehsrter time periods to be considered
in the calculations, but still requires an assuomptf where the active periods are
placed within the time unit. The assumed rule irducalculations that result in a total
value equal to the result gained if all averagesevegpanded to be valid for the entire
time unit. Explicitly stating the active time insaparate attribute is still worthwhile
since the source for active time doesn’t have tthbesame as for the average value.
The confidence, describing error due to the avaggssumes that there’s no
covariance between PVs (of the variance withiniatune average). The quality
description would be incorrect if PVs with covagarwithin the unit time are combined
by nonlinear operations. The exact gain of incaafing active time is difficult to assess
but the incorporation confidence substantially loswie assumptions required.
Lowering the requirements from a resolution thahelates systematic variation within
the unit time averages to a resolution where ndimesr operations are performed on
unit time averages that exhibits common systenvati@tion. This allows the system to
use a greater unit time than otherwise while sithining an accurate data description.

Three different methods to propagate uncertaintyeve®aluated; an algorithm based on
the GUM framework, a standard Monte Carlo methadl @Quasi-Monte Carlo

method. The family of Monte Carlo methods is kndwie slow for multidimensional
problems. Tests were performed to verify if theylddbe fast enough for automatic
uncertainty evaluation. Test of the time consuneesbive various problems with

Monte Carlo simulations has been conducted beBuethe computational speed of
standard computers increases all the time and tamats, being an approximate
concept, doesn’t require high accuracy in the satoms. This provided reason to
believe that the method might be fast enough fisrghrticular application. The five
seconds required by standard Monte Carlo to proafdaccuracy I8for M2,

confirmed that the methods still would be too sfowautomatic uncertainty evaluation
of most systems. For example, if the unit time seisto one hour and the system
contained a thousand PVs with about the same catypbes M2, then the total time
required for the simulations would have been 5@@®sdS’. This must be considered
too slow since one hour still corresponds to 3G8tbeds. The quasi-Monte Carlo failed
to shorten the time consumed by the simulationuécsssfully test wouldn’t have
implied that QMC is suitable as a general methatésthe convergence rate is closely
coupled with the effective dimension of the probleBut if at least one real high
dimensional measurement uncertainty problem préoweghin substantially from the use
of QMC, then it would have been of interest to prosl methods of assessing the
problems effective dimension and thereafter idgritie MC method to use. The overall
conclusion from the test is that automatic uncetyagvaluation must be conducted with
the GUM-algorithm. A Monte Carlo method, implemahges an offline tool, constitute
a good compliment to verify the results producedigyGUM-algorithm and calculate

5 A unit time of one hour and a thousand PVs isn’tareasonable case, A large process industry
contains lots of PVs and some, for example refgseiiave stable production that changes slowly.
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coverage factors. Another alternative for PVs, veheslue sources remain basically
unchanged, is to use an MC method and evaluatenthertainty for every R unit time
average.

Another argument for the use a GUM algorithm ig thevould be much simpler, as
compared to MC methods, to combine with consistemgcking. Only consistent
values of a PV should be combined and thereby p®duwore accurate values. The
description in section 5.2 showed that optimizatbthe weights used to combine the
different sources is a difficult problem. Two diféat alternatives were proposed to
avoid solving the optimization problem: the arithim@verage and optimal weights
under assumed independence. The results of tieeitestction 7.2 showed that both
methods where about equal in performance. Thetdlifference, as can be predicted
from their mathematical description, was that thighenetic average produced more
accurate results for doubtful descriptions of theartainty and the optimal method was
a bit better when both methods produced a consistenbination. Both methods
should produce consistent combinations in a fitehed system, where the uncertainty
of the values is correctly described. The arithmatierage is probably the best overall
choice since it aids doubtful uncertainty descoipsi better and the doubtful
descriptions can be assumed to be in greatestaiesgrovement. Using the arithmetic
average would demand a small test on whether theage does improve on the inputs.
Any of the inputs might constitute a less uncertailue than the arithmetic average.

The methods proposed in this thesis provide a dowaddation for a system operating
on averages of PVs. They provide an adequate géscriof the data, need only a few
assumptions and an implementation would be stri@ighérd. The methodological
issues of this work, as described in the introduntrestrict the claim of the hereby
proposed specifications to being@odfoundation. There might be a more suitable set
of data quality dimensions, a more clever time gjation, an algorithm to find the
optimal weights etc. These subjects should allppér debate and this work can, at
least, serve as both a contribution and founddtosuch a debate.
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Appendix A

The unbiased sample standard deviation is defised a
o(X)=| 2= — (A.1)

wherenis the sample size the individual samples an the sample average.

The concept of confidence as explained by Kleirsuke large-sample confidence
intervals described by Haas (Klein, 2007; Haas,719Bhese large-sample confidence
intervals can be erroneous and whole concept dfdamce should therefore be
regarded as approximate (Haas, 1997). The conistnuat these intervals relies on the
assumption that the observations used can be edjasia random sample large enough
for the central limit theorem to apply (Haas, 1997)

The confidence of an average aggregate of a vankls, under these assumptions,
defined as:

g(X) = (dza—z(x)jy (A.2)

n

whered is the coverage factor that expands the confidéned of the interval to 95
percent. The logic of this definition should beartehe confidence interval for an
observation of the population is + da(X ) and the errors are combined by Gaussian

error propagation to form the interval of the ageralhe Gaussian error propagation
assumes independence between errors and is ners@Eéentific applications
(Klein,2007; Lindskog, 2006). The Gaussian errapagation is based on a first order
Taylor approximation of the variance of a real fiime of independent variables. The
approximation:

2

Var(g(,..%,))= 3 92 | varlo(x.) *3)

ER

is exact for linear functions (Rade & Westergre®99d). The assumed independence
should be regarded as a compromise; some variatigg have a positive covariance
that would increase the total variance and othemsgative covariance lowering the
total variance (Lindskog, 2006).

The situation changes slightly if the samp¥gesvere subjected to some downsampling
technique before the averaging. Ea¢lvould contribute their confidence and those
confidences should, again assuming independenamrbkined by Gaussian error
propagation:
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g(f(xl,....xn)):\/i( of ]ZEZ(Xi) (A4)

But the averaging would also introduce anothasresn the form of (A.2). Klein
imposes that this new error and those of the iddizi componentX; should be
considered dependent and therefore combined bgrleddition (as for fully positively
dependent variables):

(A.5)

;ez(X.){dzaz(Y)r

n

where eachi(X,) corresponds to the confidence of the individuplirX; andY
represents the average aggregate (Klein, 20073.cldiresponds to the formula (3.2).

The confidence of a result gained by performingdinoperations on unit time averages,
such as addition or subtraction, is calculated @ting to (A.3). This should be self-
evident since the operations don't introduce arny egor apart from the initial

sampling process. The situation is slightly differor the operations denoted
nonlinear. For example, a new error is introducgddiculating a the average of a PV

Y that is defined as a multiplication of two oth&¥s X; X, asY = X, X, . This will be
handled by consideX, + da(Xl) to be a 95 percent confidence interval for ea¢heva
used to formX, . This would imply, using Gaussian error propagatiuat:

J(a(xlxz‘)J o o S50 o) (46)

0X, 0x,

I+

X, X,

constitutes a 95 percent confidence interval feheadividual observation of, X, .

Averaging ofnsuch observation would therefore have to consiglersources of errors
in the average: those of the individual observatioording to (A.5) and those of the
averaging itself according to (A.2). These two sesrmust, of course, be considered
dependent and the errors combined by linear addifibe resulting formula for
multiplication is:

Y 2.2 Y 2.2 Y 2422 Y 24242
e(averag@(lxz))z\/xz 3 (X1)+X1 3 (X2)+\/X2 do (X1)+X1 d°o (Xz) —

n, n, n n, - (A.7)

=2/X,7%(%,)+ X,’8*(X,)

where each first partial derivate has been subbstitwith the calculated average (this
would, strictly formally, introduce another smalt@). The derivation of formulas for
other nonlinear operations can be conducted siipilar
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Appendix B

This appendix provides a numerical example of gdoperations multiplication and
addition. The example in Table 1 of section 2.3 &l reused to provide the numerical
PVs. Those numbers are reproduced in Table 14 below

Sample nr

<
X
N

X1+X5 XX
12
20
8
7
63
6
18
7
16
14

171

©CoO~NOOUTAWNPE
NPAEPNONONRMRMO

10
Average

Wubdbrow~NrrnNnON
'_\
00|© ™ ®© UG5 0O ©®

(o2]

8 4.8
Table 14 - The example

Some more information is needed to construct imit averages foX; andX,. The

time description, the completeness and standartitav are parameters that are
normally provided by the measurement system. Thesorement uncertainty is usually
provided by some other external source. But thésfistional example without real data
sources and these values have to be assigned ryafinie standard deviation can be
calculated from the values of the individual sarap{@alculating the unbiased standard
deviation estimator of formula (3.22) results in:

(2-38)* +(5-38)* +(2-38)° +(1- 38)° +(7-38)’
+(3-38)* +(6-38)" +(1-38)" +(4-38)* +(7-38)°

Stdde\(X,) = 5 = 2347576 (B.1)
for X; and
(6-48)° +(4-48)° +(4-48)* +(7-48)° +(9- 48)°
— 2 _ 2 _ 2 _ 2 _ 2
Stddey(x, )= +(2-48)" +(3-48)" +(7- 48)" + (4~ 48)" +(2- 48)° _ 2347576 (B.2)

9

for X;. The other parameters have to be stipulated. lesethe chosen according to:

* Completeness = 100 percent

* Timestamp = 2008-09-18 12:00

e Duration=1

* Activetime =1

» Standard uncertainty = 1 percent of the PV’s value
* The uncertainties of the inputs are mutually inaejent

for both PVs. The confidence is calculated accaydanequation (3.1) and taking the
coverage factor as 2 yields:
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2 2 %
g(xi)z(zal—éxi)j = 1484737 (B.3)

for both i=1 and i=2. Choosing the coverage fae®P is a slight simplification. An
exact coverage factor for a large sample confidameeval with nine degrees of
freedom is slightly larger. The resulting completet time averages are shown in Table
15 and 16.

PV X1
Value 3.8
Timestamp 2008-09-18 12:00
Active Time 1
Duration 1
Standard Deviation 2.347586
Standard Uncertainty 0.038
Confidence 1.484737
Completeness 100

Table 15 - X1
PV X2
Value 4.8
Timestamp 2008-09-18 12:00
Active Time 1
Duration 1
Standard Deviation 2.347586
Standard Uncertainty 0.048
Confidence 1.484737
Completeness 100

Table 16 - X2

Let’s first consider the case when these two P\cambined by addition. The
specifications for this operation were given intget3.2.1. The value of the result is
specified in equation (3.5):

_a(X,) X, +a(X, )X, _1B8+148 _

maxa(X.).a(X,)) 1 86 B4

where Y is the result of the addition. The timegtavhY will be that of X, the duration
specified in formula (3.6) will be 1 and equati@i7( yields an active time of 1. The
completeness will remain at 100 percent sincecdlsulated as the average of the
completeness of all input PVs. The standard denatf Y is specified in equation
(3.8):

_ a(Xstd?(X,)+ a(X,)std*(X,) _ 2 2
stdlY) = \/ @) 3000 = /(2347586 + (2.347589 ©.5)
=3.319973

and the confidence specified in equation (3.9alsudated according to (B.6).
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()= \/ [ X T‘gz(xl) +( X jzfz(xz) =) (L484737" + (1) (L4873’

X, X,
=2.099735 (B.6)

The uncertainty in this example will be propagaedording to the GUM framework.
The reason for this choice is that it would be isgible to illustrate a Monte Carlo
simulation. Addition of two variables is propagatextording to (4.1):

W) = 3 (u(X, ) + 26,0,0(X (X, (X, X,) &.7)

k=1

wherer(xi VX ) = Odue to the mutual independence of the input unictiga,

Calx) o oalx)
e 1 1 ) B T P ) B

So the numerical value of the standard uncertagnty

u(Y) = Ju(X, ) +u(X,)? =(0.038° +(0.048* = 0.061221 (B.8)

Table 17 contains a summary of numerical unit tawerage. The confidence is quite
large but this is an expected result if both infhetée such large standard deviations.

PV X1+X2

Value 8.6
Timestamp 2008-09-18 12:00
Active Time 1

Duration 1
Standard Deviation 3.319973
Standard Uncertainty 0.061221
Confidence 2.099735
Completeness 100

Table 17 - Addition of X1 and X2

An example of a nonlinear operation is the multiglion specified in section 3.2.3. The
unit time averages specified in Table 15 and 16beilreused for this illustration. The
time specification of the result becomes as thahefaddition. The value:

Y =X,X,=38048=1824 (B.9)

which is 1.14 larger than the result presentedabld 14. The standard deviation
calculated according to equation (3.13) is caledan formula (B.10).

std(Y) =/ X, 2std? (X, ) + X, 2std? (X, ) + std?(X, )std?(X ,)
=/ 482(2.34758° + 38%(2.347586" + (2.347586%(2.34758§° =14.37207

(B.10)
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The confidence shown in formulae (B.11) is caladadccording to equation (3.14).

£(v)= z\/( oY JZgZ(xl){ oY ]ZEZ(XZ) 2 /(48] (1484737 + (38 (L48473T

X, X,
=18.17939 (B.11)

The uncertainty propagated with the GUM framewarkalculated according to
equation (4.1):

1 ()= 3 (eu(X, ) +26,6,u(X, 00X, )r (X, X,) ©.12)

k=1

wherer(xi ,xj): 0, ¢, = X, = 48 andc, = X, = 38. Insertion of the numerical values

yields the result shown in formulae (B.13).

u(Y) =/ 48u(X,)* + 38°u(X, ) = 48(0.038" + 38(0.048’
= 0.257953

(B.13)

The result of the multiplication is summarized iable 18.

PV X1*X2

Value 18.24
Timestamp 2008-09-18 12:00
Active Time 1

Duration 1
Standard Deviation 14.37207
Standard Uncertainty 0.257953
Confidence 18.17939
Completeness 100

Table 18 - Multiplication of X1 and X2
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Appendix C

The Monte Carlo implementation used in the tedte dlass has been stripped of all
irrelevant content such as get/set- methods. THe peesented below is the code used
in the actual simulations.

package performance;

import ProcessEntity.Ucomp;

import  ProcessEntity.Variable;

import ProcessEntity.Meter;

import cern.colt.matrix.impl.DenseDoubleMatrix2D;

import cern.colt.matrix.linalg.EigenvalueDecomposition;

import umontreal.iro.lecuyer.randvar.NormalGen;

import umontreal.iro.lecuyer.randvarmulti.MultinormalChol eskyGen;
import umontreal.iro.lecuyer.probdist.NormalDist;

import umontreal.iro.lecuyer.hups.NiedSequenceBase2;

import umontreal.iro.lecuyer.hups.PointSetlterator;

import java.util. Vector ;

import java.util. Collections

import cern.colt.matrix.linalg.Algebra;

/**

* Class that takes a variable as an argument, inde xes all the
phyMeters found in

* the tree of the variable.

* For a moment the class creates a fake covariance Matrix.
* @author Niklas Molin

*/

public class MonteCarlo

{

private Vector v; //Vektor where each PhyMeter-object will be
indexed

private final int it =10000;

private double relAccuracy = 0.00001;

private  final  int maxit =100001; /I Cannot be much higher for
MCp & gMCp metohds or heap space overflow

private  double [ mu; //Vektor med vantevarde for
feldistributionerna till méatarna

private  DenseDoubleMatrix2D sigma,; /ICovariance-Matrix
double [] point; /lwhere each point value will be saved
double res =0; /lapproximation of the variance

double resl=0; /lapproximation of y

double old =1,

double oldl=1;

int nr=1;

RandomGen RndStream;

NormalDist ND;

NormalGen NDG;

MultinormalCholeskyGen MNDG;

private  Variable m;

[IRESULT DATA----mmmmmmmm oo s
private double 'y, ymin, ymax, skewness;

private double itTime, sortTime;

private  double error, std;
private String  method= ™ ;
private int nrOflt =0;

et
public MonteCarlo(Variable m)

this .m=m;
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y = m.getValue();
v= new Vector (); //Vektor where each PhyMeter-object will
be indexed
getList(m); /lIndexed all the Phymeters in the vector
/I System.out.print("Antalet matare med osakerhet:
v.size());
Meter m1; // Variable used to save references to meters
tepomorary
sigma = new DenseDoubleMatrix2D(v.size(), v.size());
/Isigma = new double[v.size()][v.size()];
mu = new double [v.size()];
point= new double [mu.length]; /lwhere each point value
will be saved
/[The loop is supposed to load the covariance and v
of the meters
/linto the covariance-Matrix

[/l for (inti=0;i<
v.size();i++)System.out.printin(((Ucomp)((Meter)
v.elementAt(i)).getU().elementAt(0)).getld());

for (int i=0;i<v.size();i++)

m1l = (Meter)v.elementAt(i);
mu[i] = 0;

for (int j=0;j<v.size(); j++)
if (==1)
try

sigma.setQuick(i, j,

Math .pow(((Ucomp)m1.getU().elementAt(0))

.getvalue(), 2));

catch ( Exception ex)

System .out.printIn(i +
ml.getClass() + o+
m1l.getName());

}
else if (j-1==i)
{

sigma.setQuick(i, j, 0.5 *

((Ucomp)m1.getU().elementAt(0)).getValue

0
((Ucomp)((Meter)v.elementAt(j)).getU().e
lementAt(0)).getValue());
}
else if (+1==1i)

{

sigma.setQuick(i, j, 0.5 *

((Ucomp)m1.getU().elementAt(0)).getValue

0
((Ucomp)((Meter)v.elementAt(j)).getU().e
lementAt(0)).getValue());
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else

{
sigma.setQuick(i, j, 0);

}

}
Algebra A = new Algebra();

}

public MonteCarlo(Variable m, double acc)
this  (m);
relAccuracy = acc;

public  void MCp()

{
method = "MCp";
/[Creation of the object that will generate the poi nts for
each step
RndStream = new RandomGen();

ND = new NormalDist();
NDG = new NormalGen(RndStream, ND);
MNDG = new MultinormalCholeskyGen(NDG, mu, sigma);
e
/[The stop critereas and results-----------=-=-----
double sy=0;
double su=0;
double ylow = 0;
double yhigh = 0;
e
point = new double [mu.length]; /lwhere each point value
will be saved
res =0; /luppskattnigen av variansen
resl =0; /luppskattningen av y
old =1,
oldl =1,
stdOld = 0;
nr=1;
Meter m1;
Vector all = new Vector ();
double thirdMoment = 0;
double start = System .currentTimeMillis();
while (( Math.abs((resl/ (it * (nr - 1)) - m.getValue()) /
m.getValue()) > relAccuracy || Math .abs((std - stdOlId) /
std) > relAccuracy || nr < 2) && nr * it < maxit * 100)

old =res;
old1 =resi;
stdOld = std;
for (int k=0;k<it; k++)
{
MNDG.nextPoint(point);
for (int i=0;i<v.size(); i++)
{
m1l = (Meter)v.elementAt(i);
m1l.setMCvalue(point[i]);
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double bl =m.evalMC();
double b2 =m.getValue();

res += Math .pow(b1 - b2, 2);

resl += bl;

all.add(b1);

thirdMoment += Math .pow(b1 - b2, 3);
}
nr++;

std = ( Math .sqrt(res / (it * (nr - 1))));

}
double q;

itTime = System .currentTimeMillis() - start;

error = m.getValue() - resl/ (it * (nr - 1));
if (isInt(0.95 * it * (nr - 1)))

{
q=( int )0.95 *it* (nr- 1);
}
else
{
q=( int )0.95*it*(nr-1)+1/2;
}
start = System .currentTimeMillis();
Collections  .sort(all);
sortTime = System .currentTimeMillis() - start;

double n=(it* (nr-1));
nrofit = it * (nr - 1);

ymin = (( Double )all.elementAt(( int )(it* (nr-1))/

40)).doubleValue();

ymax = (( Double )all.elementAt(all.size() - (( int )it * (nr
- 1) / 40))).doubleValue();
skewness = ( Math.sqrt(n*(n-1))/(n-2))*
(thirdMoment / n) / ( Math .pow((1 / n) * res, 3/ 2));
}
public  void gMCp()
{
I' * * * *kkkkkhkkkkhkkkkk
*k%k
*int log2nrPoints -Decides the nr of point t 0 be generated
* the number of point will be 2*log2nrPoints where 0<=
log2nrPoints <= 30
*int w - w is the number of output digits an d w<=log2nrPoints

*int dim - is the dimension of the sequence and is
restricted to 318

*/
method = "gMCp";
Vector all = new Vector ();
Meter m1; // Variable used to save references to meters
tepomorary

/IRndStreaml.increasedPrecision(true);
int log2nrPoints = 13;

int w=231;
int  nrOfPoints = ( int ) Math .pow(2, log2nrPoints);
int dim = mu.length; /lwe want points for all inputs

/ISystem.out.printin("FELET : "+dim);
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NiedSequenceBase2 nxsbh2 = new
NiedSequenceBase?2(log2nrPoints, w, dim);
RndStream = new RandomGen();
/IRndStream1.resetNextSubstream();
/Inxsb2.addRandomShift();
/[RandShiftedPoint
nxsb2.addRandomsShift(0, dim, RndStream);
nxsb2.rightMatrixScramble(RndStream);
PointSetlterator a = nxsb2.iterator();

NormalGen[] NDGa = new NormalGen[mu.length];
/[Creation of the object that will generate the poi nts for
each step

ND = new NormalDist();
NDG = new NormalGen(a, ND);

try

{
MNDG = new MultinormalCholeskyGen(NDG, mu, sigma);

}

catch ( Exception ex)
{

System .out.printin(ex);

}

Il for(int g = 0; g < mu.length ;g++)NDGa[q] = new
NormalGen( a, new NormalDist(mu[q], sigma[q][q]));

/IMNDG = new MultinormalCholeskyGen(NDG,mu,sigma);/ /DET AR
VAR TIDEN FORSVINNER

double thirdMoment = 0;

double stdOld = 0;

res = 0;

resl =0;

old=1;

oldl =1,

nr=1;
double start = System .currentTimeMillis();
while (( Math.abs(((old1 - m.getValue() * ((nr - 1) *
nrOfPoints)) / ((nr - 1) * nrOfPoints * m.getValue( ) >
relAccuracy || Math .abs((std - stdOlId) / std) >
relAccuracy) && nr * nrOfPoints < maxit)

{

nxsb2.addRandomsShift(0, dim, RndStream);
nxsbh2.leftMatrixScramble(RndStream);
a.resetStartStream();

old = res;

stdOld = std;

for (int k=0;k < nrOfPoints; k++)
{

MNDG.nextPoint(point);
for (int i=0;i<v.size();i++)
{

m1l = (Meter)v.elementAt(i);
m1l.setMCvalue(point[i]);

double bl =m.evalMC();
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double b2 =m.getValue();

all.add(bl);

res += Math .pow(b1 - b2, 2);

resl += b1,

thirdMoment += Math .pow(bl - b2, 3);

a.resetToNextPoint();
if (nr>1)
old1 +=res1,;

else {oldl =resl;}
nr++;
std = ( Math .sqgrt(res / (nrOfPoints * (nr - 1))));
}
int q;
itTime = System .currentTimeMillis() - start;
std = ( Math .sqrt(res / (nrOfPaoints * (nr - 1))));
error = m.getValue() - resl / (nrOfPoints * (nr -D));
if (isInt(0.95 * nrOfPoints * (nr - 1)))
{

}

else

{

q=( int )0.95 * nrOfPoints * (nr - 1);

q=( int )0.95 * nrOfPoints * (nr- 1) + 1/ 2;

start = System .currentTimeMillis();
Collections  .sort(all);
sortTime = System .currentTimeMillis() - start;
double n = (nrOfPoints * (nr - 1));
ymin = ((  Double )all.elementAt(( int )(nrOfPoints * (nr - 1))
/ 40)).doubleValue();
ymax = (( Double )all.elementAt(all.size() -
(C int )nrOfPoints * (nr - 1) / 40))).doubleValue();
skewness = ( Math.sqrt(n*(n-1))/(n-2))*
(thirdMoment / n) / ( Math .pow((1 / n) * res, 3/ 2));
nrOflt = (nrOfPoints * (nr - 1));

}
private boolean isInt(  double d)
{
return  true ;
}

private void getList(Variable m)
if (m.getld() > 0 && !v.contains(m))

I1if (v.size()==0){

v.add(m);
return
}
else
{
for ( int i=0;i<m.getElements().size(); i++)
{
getList(((Variable)m.getElements().elementAt(i)));
}
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